Scientific Papers

DNMT1/miR-152-3p/SOS1 signaling axis promotes self-renewal and tumor growth of cancer stem-like cells derived from non-small cell lung cancer | Clinical Epigenetics


  • Siegel RL, et al. Cancer statistics. CA Cancer J Clin. 2022;72(1):7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Chansky K, et al. The IASLC lung cancer staging project: external validation of the revision of the TNM stage groupings in the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2017;12(7):1109–21.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res. 2021;81(20):5217–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, et al. SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling. J Clin Invest. 2022;132(5): e141797.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghzadeh Z, et al. Upregulation of fucosyltransferase 3, 8 and protein O-fucosyltransferase 1, 2 genes in esophageal cancer stem-like cells (CSLCs). Glycoconj J. 2020;37(3):319–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Z, et al. Curcumol controls choriocarcinoma stem-like cells self-renewal via repression of DNA Methyltransferase (DNMT)- and histone deacetylase (HDAC)-mediated epigenetic regulation. Med Sci Monit. 2018;24(24):461–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchoghandjian A, et al. Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-κB. Cell Death Differ. 2014;21(5):735–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu C, et al. MicroRNA-183 promotes migration and invasion of CD133(+)/CD326(+) lung adenocarcinoma initiating cells via PTPN4 inhibition. Tumour Biol. 2016;37(8):11289–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao B, et al. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. Stem Cells Dev. 2014;23(16):1947–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufhold S, et al. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res. 2016;25(35):84.

    Article 

    Google Scholar
     

  • Chen Y, et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science. 2021;373(6562):1537–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma XL, et al. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 2019;19(1):760.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laranjo M, et al. Obtaining cancer stem cell spheres from gynecological and breast cancer tumors. J Vis Exp. 2020;157:e60022.


    Google Scholar
     

  • Zhang H, et al. Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol. 2022;83:261–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai SF, et al. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–9. https://doi.org/10.1053/j.seminhematol.2018.08.001. (Epub 2018 Aug 22).

    Article 
    PubMed 

    Google Scholar
     

  • Hanniford D, et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell. 2020;37(1):55-70.e15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnstone SE, et al. Large-scale topological changes restrain malignant progression in colorectal cancer. Cell. 2020;182(6):1474-1489.e23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu XY, et al. DNMT1 promotes cell proliferation via methylating hMLH1 and hMSH2 promoters in EGFR-mutated non-small cell lung cancer. J Biochem. 2020;168(2):151–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, et al. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct Target Ther. 2022;7(1):81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu CC, et al. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer. 2015;136(3):547–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JK, et al. MicroRNA-125 in immunity and cancer. Cancer Lett. 2019;10(454):134–45.

    Article 

    Google Scholar
     

  • Pan G, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 2021;41(3):199–217.

    Article 
    PubMed 

    Google Scholar
     

  • Zhong S, et al. miRNAs in lung cancer a systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res. 2021;230:164–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou H, et al. Decreased plasma let-7c and miR-152 as noninvasive biomarker for non-small-cell lung cancer. Int J Clin Exp Med. 2015;8(6):9291–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang YJ, et al. MiR-152 regulates metastases of non-small cell lung cancer cells by targeting neuropilin-1. Int J Clin Exp Pathol. 2015;8(11):14235–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta D, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346(2):176–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu P, et al. Silencing of miR-152 contributes to DNMT1-mediated CpG methylation of the PTEN promoter in bladder cancer. Life Sci. 2020;15(261): 118311.

    Article 

    Google Scholar
     

  • Chen Y, et al. Identifying key genes for nasopharyngeal carcinoma by prioritized consensus differentially expressed genes caused by aberrant methylation. J Cancer. 2021;12(3):874–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee BB, et al. Metformin regulates expression of DNA methyltransferases through the miR-148/-152 family in non-small lung cancer cells. Clin Epigenetics. 2023;15(1):48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong GS, et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med. 2018;24(7):968–77. https://doi.org/10.1038/s41591-018-0022-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alles J, et al. MiR-148a impairs Ras/ERK signaling in B lymphocytes by targeting SOS proteins. Oncotarget. 2017;8(34):56417–27. https://doi.org/10.18632/oncotarget.17662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou C, et al. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J Med Chem. 2022;65(5):3923–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian Y, et al. Development of SOS1 inhibitor-based degraders to target KRAS-mutant colorectal cancer. J Med Chem. 2022;65(24):16432–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann MH, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102. https://doi.org/10.1093/nar/gkx247.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Huang S, Chen H, et al. DNMT3B regulates proliferation of A549 cells through the microRNA-152-3p/NCAM1 pathway. Oncol Lett. 2022;23(1):11. https://doi.org/10.3892/ol.2021.13129.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Q, et al. microRNA-148a-3p inhibited the proliferation and epithelial-mesenchymal transition progression of non-small-cell lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol. 2019;234(8):12786–99. https://doi.org/10.1002/jcp.27899.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurbuz V, et al. miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett. 2021;22(5):805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Q, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5(1):3–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol. 2017;31(9):e21933.

    Article 

    Google Scholar
     

  • Luo H, et al. miRNA profiling of human nasopharyngeal carcinoma cell lines HONE1 and CNE2 after X-ray therapy. Adv Clin Exp Med. 2022;31(6):671–87.

    Article 
    PubMed 

    Google Scholar
     

  • Chen B, et al. Long non-coding RNA LINC01268 promotes cell growth and inhibits cell apoptosis by modulating miR-217/SOS1 axis in acute myeloid leukemia. Braz J Med Biol Res. 2020;53(8): e9299.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pustovalova M, et al. CD44+ and CD133+ non-small cell lung cancer cells exhibit dna damage response pathways and dormant polyploid giant cancer cell enrichment relating to their p53 status. Int J Mol Sci. 2022;23(9):4922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol. 2021;75(5):1142–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathania R, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;24(6):6910.

    Article 

    Google Scholar
     

  • Tulpule A, et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell. 2021;184(10):2649-2664.e18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing F, et al. Epigenetic and posttranscriptional modulation of SOS1 can promote breast cancer metastasis through obesity-activated c-met signaling in African-American women. Cancer Res. 2021;81(11):3008–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, et al. Design, synthesis, and bioevaluation of pyrido[2,3-d]pyrimidin-7-ones as potent SOS1 inhibitors. ACS Med Chem Lett. 2023;14(2):183–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li A, et al. SOS1-inspired hydrocarbon-stapled peptide as a pan-Ras inhibitor. Bioorg Chem. 2023;135: 106500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillig RC, et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc Natl Acad Sci U S A. 2019;116(7):2551–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, et al. Ginsenoside Rg1 epigenetically modulates smad7 expression in liver fibrosis via microRNA-152. J Ginseng Res. 2023;47(4):534–42. https://doi.org/10.1016/j.jgr.2022.12.005. (Epub 2022 Dec 29).

    Article 
    PubMed 

    Google Scholar
     



  • Source link