Scientific Papers

Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs | Journal of Animal Science and Biotechnology


  • Roses AD, Akkari PA, Chiba-Falek O, Lutz MW, Gottschalk WK, Saunders AM, et al. Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing. Expert Opin Drug Metab Toxicol. 2016;12(2):135–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang C, Scott AJ, Davis JR, Tsang EK, Li X, Kim Y, et al. The impact of structural variation on human gene expression. Nat Genet. 2017;49(5):692–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21(3):171–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan CL, Lin J, Huang YY, Gao QS, Piao ZY, Yuan SL, et al. Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle. Zool Res. 2022;43(2):275–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Zhang WY, Yang BG, Zhou DK, Xu L, He YM, et al. A 1.1 Mb duplication CNV on chromosome 17 contributes to skeletal muscle development in Boer goats. Zool Res. 2023;44:303–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dermitzakis ET, Stranger EB, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frantz LAF, Schraiber JG, Madsen O, Megens HJ, Cagan A, Bosse M, et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet. 2015;47(10):1141–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White BR, Lan YH, McKeith FK, Novakofski J, Wheeler MB, McLaren DG. Growth and body composition of Meishan and Yorkshire barrows and gilts. J Anim Sci. 1995;73(3):738–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • China National Commission of Animal Genetic Resources. Animal genetic resources in China: pigs. Beijing: China Agriculture Press; 2011.

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: Biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loos RJF. 15 years of genome-wide association studies and no signs of slowing down. Nat Commun. 2020;11:5900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Li J, Kang H, Wang H, Fan Z, Yin Z, et al. Structural variant detection by large-scale sequencing reveals new evolutionary evidence on breed divergence between Chinese and European pigs. Sci Rep. 2016;6:18501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du H, Zheng X, Zhao Q, Hu Z, Wang H, Zhou L, et al. Analysis of structural variants reveal novel selective regions in the genome of Meishan pigs by whole genome sequencing. Front Genet. 2021;12:550676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong H, Liu W, Wu Z, Zhang M, Sun Y, Ling Z, et al. Evolutionary insights into porcine genomic structural variations based on a novel-constructed dataset from 24 worldwide diverse populations. Evol Appl. 2022;15:1264–80.

    Article 

    Google Scholar
     

  • Chen JQ, Zhang MP, Tong XK, Li JQ, Zhang Z, Huang F, et al. Scan of the endogenous retrovirus sequences across the swine genome and survey of their copy number variation and sequence diversity among various Chinese and Western pig breeds. Zool Res. 2022;43:423–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broad Institute. Picard toolkit. GitHub repository. 2019. https://broadinstitute.github.io/picard. Accessed 4 Mar 2023.

  • Pedersen BS, Quinlan AR. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat Commun. 2019;10:3240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2004;25:4.10.1–14.


    Google Scholar
     

  • Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8:14061.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12(10):966–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belyeu JR, Chowdhury M, Brown J, Pedersen BS, Cormier MJ, Quinlan AR, et al. Samplot: a platform for structural variant visual validation and automated filtering. Genome Biol. 2021;22:161.

  • Ginestet C. ggplot2: Elegant graphics for data analysis. J Stat Soft. 2010;35:1–3.

  • Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baum BR. PHYLIP: Phylogeny Inference Package. Version 3.2. Joel Felsenstei. Q Rev Biol. 1989;1989:539–41.

    Article 

    Google Scholar
     

  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms. SnpEff Fly (Austin). 2012;581(7809):444–51.


    Google Scholar
     

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Krusche P, Dolzhenko E, Sherman RM, Petrovski R, Schlesinger F, et al. Paragraph: A graph-based structural variant genotyper for short-read sequence data. Genome Biol. 2019;20(1):291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42(4):348–54.

  • Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, et al. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinf. 2021;19(4):619–28.

    Article 

    Google Scholar
     

  • Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):333–9.

    Article 

    Google Scholar
     

  • Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: An algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Stephen Pittard W, et al. The mobile element locator tool (MELT): Population-scale mobile element discovery and biology. Genome Res. 2017;27(11):1916–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Cao K, Deng C, Li Y, Zhu G, Fang W, et al. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol. 2020;21(1):258.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci. Mol Biol Evol. 2022;39(2):msab353.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet. 2015;47(3):217–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, D’Alessandro E, Murani E, Zheng Y, Giosa D, Yang N, et al. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob DNA. 2021;12:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Liu C, Xiong X, Fang S, Yang H, Zhang Z, et al. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet Sel Evol. 2018;50:72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang K, Wu P, Wang S, Ji X, Chen D, Jiang A, et al. Genome-wide DNA methylation analysis in Chinese Chenghua and Yorkshire pigs. BMC Genomic Data. 2021;22:21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Zhang X, Li A, Xie L, Miao X. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget. 2017;8(50):87539–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Zhang X, Li A, Xie L, Miao X. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cell Physiol Biochem. 2018;50(6):2406–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin CJ, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109(48):19529–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan A, Tian L, Zhang C, Yuan K, Xu S. Genetic diversity and natural selection footprints of the glycine amidinotransferase gene in various human populations. Sci Rep. 2016;6:18755.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiore R, Rahim B, Christoffels VM, Moorman AFM, Püschel AW. Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol. 2005;40(20):e00409–20.


    Google Scholar
     

  • Hou R, Chen L, Liu X, Liu H, Shi G, Hou X, et al. Integrating genome-wide association study with RNA-sequencing reveals HDAC9 as a candidate gene influencing loin muscle area in Beijing Black pigs. Biology (Basel). 2022;11:1635.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo T, Gao J, Yang B, Yan G, Xiao S, Zhang Z, et al. A whole genome sequence association study of muscle fiber traits in a White Duroc×Erhualian F2 resource population. Asian-Australasian J Anim Sci. 2020;33(5):704–11.

    Article 
    CAS 

    Google Scholar
     

  • Huang J, Yang Y, Tian M, Deng D, Yu M. Spatial transcriptomic and miRNA analyses revealed genes involved in the mesometrial-biased implantation in pigs. Genes (Basel). 2019;10(10):808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Zhang X, Jiao J, Zhang F, Pan Y, Wang Q, et al. Rare variants in FANCA induce premature ovarian insufficiency. Hum Genet. 2019;138(11–12):1227–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K, et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A. 2010;107(8):3799–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher D, Voronova A, Zander MA, Cancino GI, Bramall A, Krause MP, et al. Ankrd11 is a chromatin regulator involved in autism that is essential for neural development. Dev Cell. 2015;32(1):31–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19(20):4072–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsang KM, Croen LA, Torres AR, Kharrazi M, Delorenze GN, Windham GC, et al. A Genome-wide survey of transgenerational genetic effects in autism. PLoS ONE. 2013;8(10):e76978.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, et al. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2004;101(1):82–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol. 2006;417:11–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian W, Gao D, Huang C, Zhong Q, Hua R, Lei M. Heat stress impairs maternal endometrial integrity and results in embryo implantation failure by regulating transport-related gene expression in Tongcheng pigs. Biomolecules. 2022;12(3):388.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins TF, Braga Magalhães AF, Verardo LL, Santos GC, Silva Fernandes AA, Gomes Vieira JI, et al. Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS. Theriogenology. 2022;193:157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat Genet. 2019;51(8):1252–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu B, Jiao Y, Wang Y, Dong J, Wei M, Cui B, et al. A FKBP5 mutation is associated with paget’s disease of bone and enhances osteoclastogenesis. Exp Mol Med. 2017;49(5):e336.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura M, Nagai T, Matsushita R, Hashimoto A, Miyashita T, Hirohata S. Role of FK506 binding protein 5 (FKBP5) in osteoclast differentiation. Mod Rheumatol. 2013;23(6):1133–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40(5):575–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachmazidou I, Süveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho HW, Jin HS, Eom YB. A genome-wide association study of novel genetic variants associated with anthropometric traits in Koreans. Front Genet. 2021;12:669215.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong H, Xiao S, Li W, Huang T, Huang X, Yan G, et al. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet. 2019;136:3–14.

    Article 
    PubMed 

    Google Scholar
     

  • Falker-Gieske C, Blaj I, Preuß S, Bennewitz J, Thaller G, Tetens J. GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3-Genes Genom Genet. 2019;9(9):2823–34.

    Article 
    CAS 

    Google Scholar
     

  • Yoneshima E, Okamoto K, Sakai E, Nishishita K, Yoshida N, Tsukuba T. The transcription factor EB (TFEB) regulates osteoblast differentiation through ATF4/CHOP-dependent pathway. J Cell Physiol. 2016;231(6):1321–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassett JHD, Logan JG, Boyde A, Cheung MS, Evans H, Croucher P, et al. Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology. 2012;153(7):3537–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei YF, Liu L, Le LT, Yang XL, Zhang H, Wei XT, et al. Joint association analysis identified 18 new loci for bone mineral density. J Bone Miner Res. 2019;34(6):1086–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belluci MM, Schoenmaker T, Rossa-Junior C, Orrico SR, de Vries TJ, Everts V. Magnesium deficiency results in an increased formation of osteoclasts. J Nutr Biochem. 2013;24(8):1488–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D. Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol. 2013;219(1):59–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mikawa S, Sato S, Nii M, Morozumi T, Yoshioka G, Imaeda N, et al. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet. 2011;12:5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, et al. Expression quantitative trait locus study of bone mineral density GWAS variants in human osteoclasts. J Bone Miner Res. 2018;33(6):1044–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quan C, Li Y, Liu X, Wang Y, Ping J, Lu Y, et al. Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression. Genome Biol. 2021;22:159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanta O, Noor A, Chaisson MJP, Sanders AD, Zhao X, Malhotra A, et al. The effects of common structural variants on 3D chromatin structure. BMC Genomics. 2020;21:95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fudenberg G, Pollard KS. Chromatin features constrain structural variation across evolutionary timescales. Proc Natl Acad Sci U S A. 2019;116(6):2175–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakubosky D, D’Antonio M, Bonder MJ, Smail C, Donovan MKR, Young Greenwald WW, et al. Properties of structural variants and short tandem repeats associated with gene expression and complex traits. Nat Commun. 2020;11:2927.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, et al. Major Impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–349.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37(2):135–87.

    Article 

    Google Scholar
     

  • Xia B, Zhang W, Wudzinska A, Huang E, Brosh R, Pour M, et al. The genetic basis of tail-loss evolution in humans and apes. bioRxiv. 2021. https://doi.org/10.1101/2021.09.14.460388.

  • Pastor T, Talotti G, Lewandowska MA, Pagani F. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res. 2009;37(21):7258–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vacik T, Raska I. Alternative intronic promoters in development and disease. Protoplasma. 2017;254(3):1201–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su M, Han D, Boyd-Kirkup J, Yu X, Han JDJ. Evolution of Alu elements toward enhancers. Cell Rep. 2014;7(2):376–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Kannan M, Trivett AL, Liao H, Wu X, Akagi K, et al. An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition. Nucleic Acids Res. 2014;42:4546–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding M, Liu Y, Liao X, Zhan H, Liu Y, Huang W. Enhancer RNAs (eRNAs): New insights into gene transcription and disease treatment. J Cancer. 2018;9(13):2334–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Román AC, González-Rico FJ, Moltó E, Hernando H, Neto A, Vicente-Garcia C, et al. Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res. 2011;21(3):422–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastrangelo MF, Weinstock KG, Shafer BK, Hedge AM, Garfinkel DJ, Strathern JN. Disruption of a silencer domain by a retrotransposon. Genetics. 1992;131(3):519–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link