Scientific Papers

Engineered live bacteria as disease detection and diagnosis tools | Journal of Biological Engineering


  • Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT. Perspective on diagnostics for global health. IEEE Pulse. 2011;2(6):40–50.

    Article 

    Google Scholar
     

  • Hay Burgess DC, Wasserman J, Dahl CA. Global health diagnostics. Nature. 2006;444(1):1–2.

    Article 

    Google Scholar
     

  • Daar AS, Thorsteinsdóttir H, Martin DK, Smith AC, Nast S, Singer PA. Top ten biotechnologies for improving health in developing countries. Nat Genet. 2002;32(2):229–32.

    Article 

    Google Scholar
     

  • Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science. 2011;333(6047):1248–52.

    Article 

    Google Scholar
     

  • Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.

    Article 

    Google Scholar
     

  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8): e1002533.

    Article 

    Google Scholar
     

  • Rogers JK, Taylor ND, Church GM. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol. 2016;42:84–91.

    Article 

    Google Scholar
     

  • Wu Y, Wang C-W, Wang D, Wei N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth Biol. 2021;10(2):333–44.

    Article 

    Google Scholar
     

  • Courbet A, Endy D, Renard E, Molina F, Bonnet J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Science Translational Medicine. 2015;7(289):289 (ra83-ra83).

    Article 

    Google Scholar
     

  • Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. Programmable probiotics for detection of cancer in urine. Science Translational Medicine. 2015;7(289):289 (ra84-ra84).

    Article 

    Google Scholar
     

  • Park M, Tsai S-L, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors. 2013;13(5):5777–95.

    Article 

    Google Scholar
     

  • Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol. 2017;35(7):653–8.

    Article 

    Google Scholar
     

  • Daeffler KN, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol syst biol. 2017;13(4):923.

    Article 

    Google Scholar
     

  • Woo S-G, Moon S-J, Kim SK, Kim TH, Lim HS, Yeon G-H, et al. A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosens Bioelectron. 2020;168:112523.

    Article 

    Google Scholar
     

  • Naydich AD, Nangle SN, Bues JJ, Trivedi D, Nissar N, Inniss MC, et al. Synthetic gene circuits enable systems-level biosensor trigger discovery at the host-microbe interface. MSystems. 2019;4(4):e00125–e219.

    Article 

    Google Scholar
     

  • Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science. 2018;360(6391):915–8.

    Article 

    Google Scholar
     

  • Chien T, Harimoto T, Kepecs B, Gray K, Coker C, Hou N, et al. Enhancing the tropism of bacteria via genetically programmed biosensors. Nature Biomedical Engineering. 2022;6(1):94–104.

    Article 

    Google Scholar
     

  • Holowko MB, Wang H, Jayaraman P, Poh CL. Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth Biol. 2016;5(11):1275–83.

    Article 

    Google Scholar
     

  • Kylilis N, Riangrungroj P, Lai HE, Salema V, Fernández LÁ, Stan GBV, et al. Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications. ACS sens. 2019;4(2):370–8.

    Article 

    Google Scholar
     

  • Reyes S, Le N, Fuentes MD, Upegui J, Dikici E, Broyles D, et al. An intact cell bioluminescence-based assay for the simple and rapid diagnosis of urinary tract infection. Int J Mol Sci. 2020;21(14):5015.

    Article 

    Google Scholar
     

  • Xia JY, Hepler C, Tran P, Waldeck NJ, Bass J, Prindle A. Engineered calprotectin-sensing probiotics for IBD surveillance in humans. Proc Natl Acad Sci. 2023;120(32): e2221121120.

    Article 

    Google Scholar
     

  • Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences. 2014;111(13):4838–43.

    Article 

    Google Scholar
     

  • Zou Z-P, Du Y, Fang T-T, Zhou Y, Ye B-C. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe. 2023;31(2):199–212.e5.

    Article 

    Google Scholar
     

  • Raut N, Pasini P, Daunert S. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system. Anal Chem. 2013;85(20):9604–9.

    Article 

    Google Scholar
     

  • Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2006;355(4):619–27.

    Article 

    Google Scholar
     

  • Swofford CA, Van Dessel N, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci. 2015;112(11):3457–62.

    Article 

    Google Scholar
     

  • Stetz MA, Carter MV, Wand AJ. Optimized expression and purification of biophysical quantities of Lac repressor and Lac repressor regulatory domain. Protein Expr Purif. 2016;123:75–82.

    Article 

    Google Scholar
     

  • Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. Amplifying genetic logic gates. Science. 2013;340(6132):599–603.

    Article 

    Google Scholar
     

  • Anderson JC, Voigt CA, Arkin AP. Environmental signal integration by a modular AND gate. Mol Syst Biol. 2007;3(1):133.

    Article 

    Google Scholar
     

  • Wang B, Kitney RI, Joly N, Buck M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun. 2011;2:508.

    Article 

    Google Scholar
     

  • Wan X, Ho TYH, Wang B. Engineering prokaryote synthetic biology biosensors. In: Thouand, G. (eds) Handbook of Cell Biosensors. Cham: Springer. https://doi.org/10.1007/978-3-319-47405-2_131-1.

  • Archer EJ, Robinson AB, Suel GM. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synthetic Biology. 2012;1(10):451–7.

    Article 

    Google Scholar
     

  • Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S. Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem. 2006;78(22):7603–9.

    Article 

    Google Scholar
     

  • Liang B, Li L, Tang X, Lang Q, Wang H, Li F, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron. 2013;45:19–24.

    Article 

    Google Scholar
     

  • Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, Cuesta AM, Álvarez-Vallina L, Fernández LÁ. Programming Controlled Adhesion of E. coli to Target Surfaces, Cells, and Tumors with Synthetic Adhesins. ACS Synth Biol. 2015;4(4):463–73.

    Article 

    Google Scholar
     

  • Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Science Translational Medicine. 2018;10(445):eaao2586.

    Article 

    Google Scholar
     

  • Liu X, Yang Y, Inda ME, Lin S, Wu J, Kim Y, et al. Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis. Adv Func Mater. 2022;31(27):2010918.

    Article 

    Google Scholar
     

  • Henriksen M, Høivik ML, Jelsness-Jørgensen L-P, Moum B, Group IS. Irritable Bowel-like Symptoms in Ulcerative Colitis are as Common in Patients in Deep Remission as in Inflammation: Results From a Population-based Study [the IBSEN Study]. J Crohns Colitis. 2018;12(4):389–93.

    Article 

    Google Scholar
     

  • Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7: e7502.

    Article 

    Google Scholar
     

  • Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu S, Andreu-Sánchez S, Chen L, et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat Genet. 2022;54(2):143–51.

    Article 

    Google Scholar
     

  • Cresci GA, Bawden E. Gut microbiome: what we do and don’t know. Nutr Clin Pract. 2015;30(6):734–46.

    Article 

    Google Scholar
     

  • Häfner M. Conventional colonoscopy: technique, indications, limits. Eur J Radiol. 2007;61(3):409–14.

    Article 

    Google Scholar
     

  • Litcofsky KD, Afeyan RB, Krom RJ, Khalil AS, Collins JJ. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nat Methods. 2012;9(11):1077–80.

    Article 

    Google Scholar
     

  • Toman Z, Dambly-Chaudiere C, Tenenbaum L, Radman M. A system for detection of genetic and epigenetic alterations in Escherichia coli induced by DNA-damaging agents. J Mol Biol. 1985;186(1):97–105.

    Article 

    Google Scholar
     

  • Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403(6767):339–42.

    Article 

    Google Scholar
     

  • Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–9.

    Article 

    Google Scholar
     

  • Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17.

    Article 

    Google Scholar
     

  • Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113–20.

    Article 

    Google Scholar
     

  • Coakley FV, Gould R, Yeh BM, Arenson RL. CT radiation dose: what can you do right now in your practice? Am J Roentgenol. 2011;196(3):619–25.

    Article 

    Google Scholar
     

  • Park KT, Ehrlich OG, Allen JI, Meadows P, Szigethy EM, Henrichsen K, et al. The cost of inflammatory bowel disease: an initiative from the Crohn’s & Colitis Foundation. Inflamm Bowel Dis. 2020;26(1):1–10.

    Article 

    Google Scholar
     

  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–99.

    Article 

    Google Scholar
     

  • Chandran P, Satthaporn S, Robins A, Eremin O. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (II). The Surgeon. 2003;1(3):125–36.

    Article 

    Google Scholar
     

  • Grellier N, Suzuki MT, Brot L, Rodrigues AMS, Humbert L, Escoubeyrou K, et al. Impact of IBD-Associated Dysbiosis on Bacterial Quorum Sensing Mediated by Acyl-Homoserine Lactone in Human Gut Microbiota. Int J Mol Sci. 2022;23(23):15404.

    Article 

    Google Scholar
     

  • Coquant G, Grill J-P, Seksik P. Impact of N-acyl-homoserine lactones, quorum sensing molecules, on gut immunity. Front Immunol. 2020;11:1827.

    Article 

    Google Scholar
     

  • Geske GD, O’Neill JC, Blackwell HE. Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev. 2008;37(7):1432–47.

    Article 

    Google Scholar
     

  • Lundberg JO, Hellström PM, Lundberg JM, Alving K. Greatly increased luminal nitric oxide in ulcerative colitis. Lancet (London, England). 1994;344(8938):1673–4.

    Article 

    Google Scholar
     

  • Tucker NP, D’Autreaux BT, Yousafzai FK, Fairhurst SA, Spiro S, Dixon R. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein. Journal of Biological Chemistry. 2008;283(2):908–18.

    Article 

    Google Scholar
     

  • Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature. 2023;620(7973):386–92.

    Article 

    Google Scholar
     

  • Sipponen T. Diagnostics and prognostics of inflammatory bowel disease with fecal neutrophil-derived biomarkers calprotectin and lactoferrin. Dig Dis. 2013;31(3–4):336–44.

    Article 

    Google Scholar
     

  • Chang S, Malter L, Hudesman D. Disease monitoring in inflammatory bowel disease. World J Gastroenterol: WJG. 2015;21(40):11246.

    Article 

    Google Scholar
     

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article 

    Google Scholar
     

  • Refaat A, Yap ML, Pietersz G, Walsh APG, Zeller J, Del Rosal B, et al. In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications. Journal of Nanobiotechnology. 2022;20(1):1–22.

    Article 

    Google Scholar
     

  • Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    Article 

    Google Scholar
     

  • Schöder H, Gönen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med. 2007;48(1):4S–18S.


    Google Scholar
     

  • Shyamala K, Girish HC, Murgod S. Risk of tumor cell seeding through biopsy and aspiration cytology. Journal of International Society of Preventive & Community Dentistry. 2014;4(1):5.

    Article 

    Google Scholar
     

  • Duffy MJ. Clinical uses of tumor markers: a critical review. Crit Rev Clin Lab Sci. 2001;38(3):225–62.

    Article 

    Google Scholar
     

  • Traore MA, Sahari A, Behkam B. Construction of bacteria-based cargo carriers for targeted cancer therapy. Methods Mol Biol. 2018;1831:25–35.

    Article 

    Google Scholar
     

  • Zheng D-W, Chen Y, Li Z-H, Xu L, Li C-X, Li B, et al. Optically-controlled bacterial metabolite for cancer therapy. Nat Commun. 2018;9(1):1–12.

    Article 

    Google Scholar
     

  • Guo Y, Chen Y, Liu X, Min J-J, Tan W, Zheng JH. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett. 2020;469:102–10.

    Article 

    Google Scholar
     

  • Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Advanced Science. 2019;6(3):1801309.

    Article 

    Google Scholar
     

  • Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727–43.

    Article 

    Google Scholar
     

  • Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies. Science. 2022;378(6622):858–64.

    Article 

    Google Scholar
     

  • Sitnikov DM, Schineller JB, Baldwin TO. Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Mol Microbiol. 1995;17(5):801–12.

    Article 

    Google Scholar
     

  • Ritchie H, Spooner F, Roser M. Causes of death. Our world in data. 2018.


    Google Scholar
     

  • Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013;57:S139–70.

    Article 

    Google Scholar
     

  • Robert-Pillot A, Baron S, Lesne J, Fournier J-M, Quilici M-L. Improved specific detection of Vibrio cholerae in environmental water samples by culture on selective medium and colony hybridization assay with an oligonucleotide probe. FEMS Microbiol Ecol. 2002;40(1):39–46.

    Article 

    Google Scholar
     

  • Almeida RJ, Hickman-Brenner FW, Sowers EG, Puhr ND, Farmer JJ 3rd, Wachsmuth IK. Comparison of a latex agglutination assay and an enzyme-linked immunosorbent assay for detecting cholera toxin. J Clin Microbiol. 1990;28(1):128–30.

    Article 

    Google Scholar
     

  • Nato F, Boutonnier A, Rajerison M, Grosjean P, Dartevelle S, Guenole A, et al. One-step immunochromatographic dipstick tests for rapid detection of Vibrio cholerae O1 and O139 in stool samples. Clin Vaccine Immunol. 2003;10(3):476–8.

    Article 

    Google Scholar
     

  • Fields PI, Popovic T, Wachsmuth K, Olsvik Ø. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J Clin Microbiol. 1992;30(8):2118–21.

    Article 

    Google Scholar
     

  • Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL. Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol. 2011;79(6):1407–17.

    Article 

    Google Scholar
     

  • Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002;110(3):303–14.

    Article 

    Google Scholar
     

  • Dick MH, Guillerm M, Moussy F, Chaignat C-L. Review of two decades of cholera diagnostics–how far have we really come? PLoS Neglected Tropical Diseases. 2012;6(10):e1845.

    Article 

    Google Scholar
     

  • Cecchini F, Fajs L, Cosnier S, Marks RS. Vibrio cholerae detection: Traditional assays, novel diagnostic techniques and biosensors. TrAC, Trends Anal Chem. 2016;79:199–209.

    Article 

    Google Scholar
     

  • Alverdy JC, Aoys E, Moss GS. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988;104(2):185–90.


    Google Scholar
     

  • Koh AY, Priebe GP, Pier GB. Virulence of Pseudomonas aeruginosa in a murine model of gastrointestinal colonization and dissemination in neutropenia. Infect Immun. 2005;73(4):2262–72.

    Article 

    Google Scholar
     

  • Okuda J, Hayashi N, Okamoto M, Sawada S, Minagawa S, Yano Y, et al. Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na, K-ATPase regulator, FXYD3. Infect Immun. 2010;78(11):4511–22.

    Article 

    Google Scholar
     

  • Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.

    Article 

    Google Scholar
     

  • Weinstein RA, Mayhall CG. The epidemiology of burn wound infections: then and now. Clin Infect Dis. 2003;37(4):543–50.

    Article 

    Google Scholar
     

  • Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol. 2011;7(1):521.

    Article 

    Google Scholar
     

  • Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8:15028.

    Article 

    Google Scholar
     

  • Mambatta AK, Jayarajan J, Rashme VL, Harini S, Menon S, Kuppusamy J. Reliability of dipstick assay in predicting urinary tract infection. Journal of family medicine and primary care. 2015;4(2):265.

    Article 

    Google Scholar
     

  • Wilson ML, Gaido L. Laboratory Diagnosis of Urinary Tract Infections in Adult Patients. Clin Infect Dis. 2022;38(8):1150–8.

    Article 

    Google Scholar
     

  • Stamm WE, Counts GW, Running KR, Fihn S, Turck M, Holmes KK. Diagnosis of coliform infection in acutely dysuric women. N Engl J Med. 1982;307(8):463–8.

    Article 

    Google Scholar
     

  • Chenoweth CE, Gould CV, Saint S. Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect Dis Clin North Am. 2014;28:105–19.

    Article 

    Google Scholar
     

  • Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors (Basel). 2020;20(23):6925.

    Article 

    Google Scholar
     

  • Ginsberg BH. Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement. J Diabetes Sci Technol. 2009;3(4):903–13.

    Article 

    Google Scholar
     

  • Liman MNP, Jialal I. Physiology, glycosuria. 2020.


    Google Scholar
     

  • Jahns AC, Rehm BHA. Relevant uses of surface proteins–display on self-organized biological structures. Microb Biotechnol. 2012;5(2):188–202.

    Article 

    Google Scholar
     

  • Yoetz-Kopelman T, Porat-Ophir C, Shacham-Diamand Y, Freeman A. Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors. Sens Actuators, B Chem. 2016;223:392–9.

    Article 

    Google Scholar
     

  • Jeon W-Y, Kim H-H, Choi Y-B. Development of a glucose sensor based on glucose dehydrogenase using polydopamine-functionalized nanotubes. Membranes. 2021;11(6):384.

    Article 

    Google Scholar
     

  • Lan T, Zhang J, Lu Y. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol Adv. 2016;34(3):331–41.

    Article 

    Google Scholar
     

  • Ahmed I, Jiang N, Shao X, Elsherif M, Alam F, Salih A, et al. Recent advances in optical sensors for continuous glucose monitoring. Sensors & Diagnostics. 2022;1(6):1098–125.

    Article 

    Google Scholar
     

  • Ortega-Vinuesa JL, Bastos-González D. A review of factors affecting the performances of latex agglutination tests. J Biomater Sci Polym Ed. 2001;12(4):379–408.

    Article 

    Google Scholar
     

  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97.

    Article 

    Google Scholar
     

  • Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, et al. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two β-domains of opposite topologies. PloS one. 2013;8(9):e75126.

    Article 

    Google Scholar
     

  • Lowe GDO, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem. 2004;41(6):430–40.

    Article 

    Google Scholar
     

  • Stec JJ, Silbershatz H, Tofler GH, Matheney TH, Sutherland P, Lipinska I, et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation. 2000;102(14):1634–8.

    Article 

    Google Scholar
     

  • Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham Study. JAMA. 1987;258(9):1183–6.

    Article 

    Google Scholar
     

  • Gargan PE, Sheehan C, Williams L, Ploplis V, Hearty U, Lowry C. A rapid latex agglutination assay for the determination of plasma fibrinogen. Blood Coag Fibrinol. 1990;1(4–5):465–8.


    Google Scholar
     

  • Chen Q, Hua X, Fu W, Liu D, Chen M, Cai G. Quantitative determination of fibrinogen of patients with coronary heart diseases through piezoelectric agglutination sensor. Sensors. 2010;10(3):2107–18.

    Article 

    Google Scholar
     

  • Campuzano S, Salema V, Moreno-Guzmán M, Gamella M, Yáñez-Sedeño P, Fernández LA, et al. Disposable amperometric magnetoimmunosensors using nanobodies as biorecognition element. Determination of fibrinogen in plasma. Biosens Bioelectron. 2014;52:255–60.

    Article 

    Google Scholar
     

  • Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. Tissue Eng Part B Rev. 2015;21(1):88–102.

    Article 

    Google Scholar
     

  • Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, et al. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging. 2021;48(6):1736–58.

    Article 

    Google Scholar
     

  • James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article 

    Google Scholar
     

  • Fan J-X, Li Z-H, Liu X-H, Zheng D-W, Chen Y, Zhang X-Z. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 2018;18(4):2373–80.

    Article 

    Google Scholar
     

  • Jiang S-N, Phan TX, Nam T-K, Nguyen VH, Kim H-S, Bom H-S, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli–mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635–42.

    Article 

    Google Scholar
     

  • Nguyen VH, Kim H-S, Ha J-M, Hong Y, Choy HE, Min J-J. Genetically engineered Salmonella Typhimurium as an imageable therapeutic probe for cancer. Can Res. 2010;70(1):18–23.

    Article 

    Google Scholar
     

  • Leschner S, Deyneko IV, Lienenklaus S, Wolf K, Bloecker H, Bumann D, et al. Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic. Nucleic Acids Research. 2012;40(7):2984–94.

    Article 

    Google Scholar
     

  • Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, et al. Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterology. 2001;121(3):678–84.

    Article 

    Google Scholar
     

  • Van Mellaert L, Barbé S, Anné J. Clostridium spores as anti-tumour agents. Trends Microbiol. 2006;14(4):190–6.

    Article 

    Google Scholar
     

  • Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi SI. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer gene therapy. 2000;7(2):269–74.

    Article 

    Google Scholar
     

  • Li X, Fu G-F, Fan Y-R, Liu W-H, Liu X-J, Wang J-J, et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 2003;10(2):105–11.

    Article 

    Google Scholar
     

  • Kruis W, Frič P, Pokrotnieks J, Lukáš M, Fixa B, Kaščák M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53(11):1617.

    Article 

    Google Scholar
     

  • Grozdanov L, Raasch C, Schulze JR, Sonnenborn U, Gottschalk G, Hacker JR, et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli Strain Nissle 1917. Journal of Bacteriology. 2004;186(16):5432–41.

    Article 

    Google Scholar
     

  • Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity. PLoS ONE. 2007;2(12):e1308.

    Article 

    Google Scholar
     

  • De Boer J, Van Blitterswijk C, Löwik C. Bioluminescent imaging: emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials. 2006;27(9):1851–8.

    Article 

    Google Scholar
     

  • Chen IY, Gheysens O, Ray S, Wang Q, Padmanabhan P, Paulmurugan R, et al. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy. Gene Ther. 2010;17(7):827–38.

    Article 

    Google Scholar
     

  • Soghomonyan SA, Doubrovin M, Pike J, Luo X, Ittensohn M, Runyan JD, et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 2005;12(1):101–8.

    Article 

    Google Scholar
     

  • Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14(8):2295–302.

    Article 

    Google Scholar
     

  • Diaz LA Jr, Foss CA, Thornton K, Nimmagadda S, Endres CJ, Uzuner O, et al. Imaging of musculoskeletal bacterial infections by [124I] FIAU-PET/CT. PLoS ONE. 2007;2(10): e1007.

    Article 

    Google Scholar
     

  • Jang SJ, Lee YJ, Lim S, Kim KI, Lee KC, An GI, et al. Imaging of a localized bacterial infection with endogenous thymidine kinase using radioisotope-labeled nucleosides. Int J Med Microbiol. 2012;302(2):101–7.

    Article 

    Google Scholar
     

  • Bettegowda C, Foss CA, Cheong I, Wang Y, Diaz L, Agrawal N, et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci. 2005;102(4):1145–50.

    Article 

    Google Scholar
     

  • Pullambhatla M, Tessier J, Beck G, Jedynak B, Wurthner JU, Pomper MG. [125I] FIAU imaging in a preclinical model of lung infection: quantification of bacterial load. American journal of nuclear medicine and molecular imaging. 2012;2(3):260.


    Google Scholar
     

  • Bourdeau RW, Lee-Gosselin A, Lakshmanan A, Farhadi A, Kumar SR, Nety SP, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. 2018;553(7686):86–90.

    Article 

    Google Scholar
     

  • Hurt RC, Buss MT, Duan M, Wong K, You MY, Sawyer DP, et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nature Biotechnology. 2023;41(7):919–31.

    Article 

    Google Scholar
     

  • Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, et al. Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria. Clin Cancer Res. 2009;15(16):5170–7.

    Article 

    Google Scholar
     

  • Hill PJ, Stritzker J, Scadeng M, Geissinger U, Haddad D, Basse-Lüsebrink TC, et al. Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing Escherichia coli. PLoS ONE. 2011;6(10):e25409.

    Article 

    Google Scholar
     

  • Zheng L, Zhang Z, Khazaie K, Saha S, Lewandowski RJ, Zhang G, et al. MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pancreatic carcinoma mouse model. PLoS ONE. 2014;9(12): e116204.

    Article 

    Google Scholar
     

  • Ji J, Park WR, Cho S, Yang Y, Li W, Harris K, et al. Iron-oxide nanocluster labeling of clostridium novyi-NT spores for MR imaging–monitored locoregional delivery to liver tumors in rat and rabbit models. J Vasc Interv Radiol. 2019;30(7):1106–15.

    Article 

    Google Scholar
     

  • Hudak JE, Alvarez D, Skelly A, Von Andrian UH, Kasper DL. Illuminating vital surface molecules of symbionts in health and disease. Nat Microbiol. 2017;2(9):1–8.

    Article 

    Google Scholar
     

  • Stanton M, Cronin M, Lehouritis P, Tangney M. In vivo bacterial imaging without engineering; a novel probe-based strategy facilitated by endogenous nitroreductase enzymes. Curr Gene Ther. 2015;15(3):277–88.

    Article 

    Google Scholar
     

  • Liu C, Gu Y. Noninvasive optical imaging of staphylococcus aureus infection in vivo using an antimicrobial peptide fragment based near-infrared fluorescent probes. Journal of Innovative Optical Health Sciences. 2013;6(03):1350026.

    Article 

    Google Scholar
     

  • Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, et al. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater. 2011;10(8):602–7.

    Article 

    Google Scholar
     

  • Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci. 2005;102(3):755–60.

    Article 

    Google Scholar
     

  • Piraner DI, Abedi MH, Moser BA, Lee-Gosselin A, Shapiro MG. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol. 2017;13(1):75–80.

    Article 

    Google Scholar
     

  • Min J-J, Kim H-J, Park JH, Moon S, Jeong JH, Hong Y-J, et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imag Biol. 2008;10(1):54–61.

    Article 

    Google Scholar
     

  • Jiang S-N, Park S-H, Lee HJ, Zheng JH, Kim H-S, Bom H-S, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther. 2013;21(11):1985–95.

    Article 

    Google Scholar
     

  • Zhou S, Zhao Z, Lin Y, Gong S, Li F, Pan J, et al. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system. Cancer biology and therapy. 2016;17(7):732–40.

    Article 

    Google Scholar
     

  • Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun. 2000;68(6):3594–600.

    Article 

    Google Scholar
     

  • Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, LeTourneau DL, McMillian CL, et al. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother. 2001;45(1):129–37.

    Article 

    Google Scholar
     

  • Kadurugamuwa JL, Sin L, Albert E, Yu J, Francis K, DeBoer M, et al. Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun. 2003;71(2):882–90.

    Article 

    Google Scholar
     

  • Engelsman AF, van der Mei HC, Francis KP, Busscher HJ, Ploeg RJ, van Dam GM. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. J Biomed Mater Res B Appl Biomater. 2009;88B(1):123–9.

    Article 

    Google Scholar
     

  • Le UN, Kim H-S, Kwon J-S, Kim MY, Nguyen VH, Jiang SN, et al. Engineering and visualization of bacteria for targeting infarcted myocardium. Mol Ther. 2011;19(5):951–9.

    Article 

    Google Scholar
     

  • Guo H, Cao Z, Li J, Fu Z, Lin S, Wang L, et al. Integrating Bacteria with a Ternary Combination of Photosensitizers for Monochromatic Irradiation-Mediated Photoacoustic Imaging-Guided Synergistic Photothermal Therapy. ACS nano. 2023;17(5):5059–71.

    Article 

    Google Scholar
     

  • Gao R, Liu F, Liu W, Zeng S, Chen J, Gao R, et al. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc Natl Acad Sci. 2022;119(8): e2121982119.

    Article 

    Google Scholar
     

  • Garza-Morales R, Rendon BE, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, et al. Targeting melanoma hypoxia with the food-grade lactic acid bacterium Lactococcus lactis. Cancers. 2020;12(2):438.

    Article 

    Google Scholar
     

  • Yang Y, Chu B, Cheng J, Tang J, Song B, Wang H, et al. Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms. Nat Commun. 2022;13(1):1255.

    Article 

    Google Scholar
     

  • Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci. 2000;97(16):9226–33.

    Article 

    Google Scholar
     

  • Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography. London: Springer; 2005. https://doi.org/10.1007/b136169.

  • Berger A. How does it work? Positron emission tomography. BMJ. 2003;326(7404):1449.

    Article 

    Google Scholar
     

  • Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2009;50(1):88–99.

    Article 

    Google Scholar
     

  • Fukuda H, Matsuzawa T, Abe Y, Endo S, Yamada K, Kubota K, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs:[18 F]-2-fluoro-2-deoxy-D-mannose: A new tracer for cancer detection. Eur J Nucl Med. 1982;7:294–7.

    Article 

    Google Scholar
     

  • Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F] FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.

    Article 

    Google Scholar
     

  • Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, et al. PET visualization of microglia in multiple sclerosis patients using [11C] PK11195. Eur J Neurol. 2003;10(3):257–64.

    Article 

    Google Scholar
     

  • Brown TLY, Spencer HJ, Beenken KE, Alpe TL, Bartel TB, Bellamy W, et al. Evaluation of dynamic [18F]-FDG-PET imaging for the detection of acute post-surgical bone infection. PLoS ONE. 2012;7(7): e41863.

    Article 

    Google Scholar
     

  • Laverman P, Corstens F, Oyen W, Boerman O. Radiolabeled FIAU can discriminate between bacterial infection and sterile inflammation. J Nucl Med. 2007;48:179P.


    Google Scholar
     

  • Zoller SD, Park HY, Olafsen T, Zamilpa C, Burke ZDC, Blumstein G, et al. Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI insight. 2019;4(3): e124813.

    Article 

    Google Scholar
     

  • Moran CM, Thomson AJW. Preclinical ultrasound imaging—A review of techniques and imaging applications. Frontiers in Physics. 2020;8:124.

    Article 

    Google Scholar
     

  • Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents. Frontiers in Bioscience-Landmark. 2007;12(13):5124–42.

    Article 

    Google Scholar
     

  • Streeter JE, Gessner R, Miles I, Dayton PA. Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies. Mol Imaging. 2010;9(2):7290–2010.

    Article 

    Google Scholar
     

  • Sawyer DP, Bar-Zion A, Farhadi A, Shivaei S, Ling B, Lee-Gosselin A, et al. Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat Methods. 2021;18(8):945–52.

    Article 

    Google Scholar
     

  • Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2018;119(2):957–1057.

    Article 

    Google Scholar
     

  • Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, et al. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. The International Journal of Robotics Research. 2009;28(9):1169–82.

    Article 

    Google Scholar
     

  • Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Zhong XuY, Loghin D, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016;11(11):941–7.

    Article 

    Google Scholar
     

  • Heeman W, Vonk J, Ntziachristos V, Pogue BW, Dierckx RAJO, Kruijff S, et al. A guideline for clinicians performing clinical studies with fluorescence imaging. J Nucl Med. 2022;63(5):640–5.


    Google Scholar
     

  • Craandijk A, Van Beek CA. Indocyanine green fluorescence angiography of the choroid. Br J Ophthalmol. 1976;60(5):377–85.

    Article 

    Google Scholar
     

  • Dell’Oglio P, de Vries HM, Mazzone E, KleinJan GH, Donswijk ML, van der Poel HG, et al. Hybrid indocyanine green–99mTc-nanocolloid for single-photon emission computed tomography and combined radio-and fluorescence-guided sentinel node biopsy in penile cancer: results of 740 inguinal basins assessed at a single institution. Eur Urol. 2020;78(6):865–72.

    Article 

    Google Scholar
     

  • Yamaguchi S, De Lorenzi F, Petit JY, Rietjens M, Garusi C, Giraldo A, et al. The “perfusion map” of the unipedicled TRAM flap to reduce postoperative partial necrosis. Ann Plast Surg. 2004;53(3):205–9.

    Article 

    Google Scholar
     

  • Avelas Receives FDA Breakthrough Therapy Designation for Pegloprastide (AVB-620) for Use During Breast Cancer Surgery – Avelas Biosciences 2020 [updated 2020–12–14. Available from: https://www.avelasbio.com/avelas-receives-fda-breakthrough-therapy-designation-for-pegloprastide-avb-620-for-use-during-breast-cancer-surgery/.

  • Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med. 2014;20(3):313–8.

    Article 

    Google Scholar
     

  • Gao RW, Teraphongphom NT, van den Berg NS, Martin BA, Oberhelman NJ, Divi V, et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Can Res. 2018;78(17):5144–54.

    Article 

    Google Scholar
     

  • Vonk J, de Wit JG, Voskuil FJ, Tang YH, Hooghiemstra WTR, Linssen MD, et al. Epidermal Growth Factor Receptor-Targeted Fluorescence Molecular Imaging for Postoperative Lymph Node Assessment in Patients with Oral Cancer. J Nucl Med. 2022;63(5):672–8.


    Google Scholar
     

  • Shcherbakova DM, Baloban M, Verkhusha VV. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr Opin Chem Biol. 2015;27:52–63.

    Article 

    Google Scholar
     

  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article 

    Google Scholar
     

  • Lupetti A, Welling MM, Pauwels EKJ, Nibbering PH. Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis. 2003;3(4):223–9.

    Article 

    Google Scholar
     

  • Akhtar MS, Iqbal J, Khan MA, Irfanullah J, Jehangir M, Khan B, et al. 99mTc-labeled antimicrobial peptide ubiquicidin (29–41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J Nucl Med. 2004;45(5):849–56.


    Google Scholar
     

  • Min J-J, Nguyen VH, Kim H-J, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3(4):629–36.

    Article 

    Google Scholar
     

  • Jiang T, Yang X, Li G, Zhao X, Sun T, Müller R, et al. Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging. Anal Chem. 2021;93(47):15687–95.

    Article 

    Google Scholar
     

  • Song M, Kim H-J, Kim EY, Shin M, Lee HC, Hong Y, et al. ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem. 2004;279(33):34183–90.

    Article 

    Google Scholar
     

  • Na HS, Kim HJ, Lee H-C, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine. 2006;24(12):2027–34.

    Article 

    Google Scholar
     

  • Zheng JH, Nguyen VH, Jiang S-N, Park S-H, Tan W, Hong SH, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Science translational medicine. 2017;9(376):eaak9537.

    Article 

    Google Scholar
     

  • Tan W, Duong MT-Q, Zuo C, Qin Y, Zhang Y, Guo Y, et al. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Molecular Therapy. 2022;30(2):662–71.

    Article 

    Google Scholar
     

  • Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. The Lancet. 2003;361(9355):374–9.

    Article 

    Google Scholar
     

  • Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol. 1988;14(3–4):205–24.


    Google Scholar
     

  • Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev. 2017;46(8):2158–98.

    Article 

    Google Scholar
     

  • Oraevsky AA, Karabutov AA, Solomatin SV, Savateeva EV, Andreev VA, Gatalica Z, Singh H, Fleming DR. “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, Biomedical Optoacoustics II. 2001. https://doi.org/10.1117/12.429300.

  • Zhou Y, Tripathi SV, Rosman I, Ma J, Hai P, Linette GP, et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe. J Invest Dermatol. 2017;137(6):1370.

    Article 

    Google Scholar
     

  • Jo J, Tian C, Xu G, Sarazin J, Schiopu E, Gandikota G, et al. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics. 2018;12:82–9.

    Article 

    Google Scholar
     

  • Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med. 2017;376(13):1292–4.

    Article 

    Google Scholar
     

  • Popovic A, Tartare-Deckert S. Role of extracellular matrix architecture and signaling in melanoma therapeutic resistance. Front Oncol. 2022;12:4686.

    Article 

    Google Scholar
     

  • Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110(5):2783–94.

    Article 

    Google Scholar
     

  • Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, et al. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol. 2013;168(2):120–9.

    Article 

    Google Scholar
     

  • Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-time imaging of brain tumor for image-guided surgery. Adv Healthcare Mater. 2018;7(16):1800066.

    Article 

    Google Scholar
     

  • Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug delivery vehicles across biological barriers. J Pharm Investig. 2018;48(1):89–111.

    Article 

    Google Scholar
     

  • Pogue BW, Rosenthal EL, Achilefu S, Van Dam GM. Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J Biomed Opt. 2018;23(10): 100601.

    Article 

    Google Scholar
     

  • He W, Zhang Z, Luo Y, Kwok RTK, Zhao Z, Tang BZ. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery. Biomaterials. 2022;288: 121709.

    Article 

    Google Scholar
     

  • Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal Chem. 2022;94(28):10109–17.

    Article 

    Google Scholar
     

  • Liang K, Liu Q, Kong Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy. Biotechnol Bioeng. 2021;118(2):513–30.

    Article 

    Google Scholar
     

  • Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem. 2016;60(4):393–410.

    Article 

    Google Scholar
     

  • Stirling F, Bitzan L, O’Keefe S, Redfield E, Oliver JWK, Way J, et al. Rational design of evolutionarily stable microbial kill switches. Mol Cell. 2017;68(4):686–97.

    Article 

    Google Scholar
     

  • Wright O, Delmans M, Stan G-B, Ellis T. GeneGuard: a modular plasmid system designed for biosafety. ACS Synth Biol. 2015;4(3):307–16.

    Article 

    Google Scholar
     

  • Ross JJ, Boucher PE, Bhattacharyya SP, Kopecko DJ, Sutkowski EM, Rohan PJ, et al. Considerations in the development of live biotherapeutic products for clinical use. Curr Issues Mol Biol. 2008;10(1–2):13–6.


    Google Scholar
     

  • U.S. Department of Health and Human Services FaDAGfI. Early clinical trials with live biotherapeutic products: Chemistry, manufacturing, and control information. 2016 [Available from: www.fda.gov/downloads/Biologi%E2%80%A6/UCM292704.pdf.

  • Administration USFaD. Deal, C. Science and Regulation of Live Microbiome-Based Products Used to Prevent, Treat, or Cure Diseases in Humans – 09/17/2018 – 09/17/2018 2019 [Available from: http://www.fda.gov/vaccines-blood-biologics/workshops-meetings-conferences-biologics/science-and-regulation-live-microbiome-based-products-used-prevent-treat-or-cure-diseases-humans.

  • Huang W, Tsai L, Li Y, Hua N, Sun C, Wei C. Widespread of horizontal gene transfer in the human genome. BMC Genomics. 2017;18(1):1–11.

    Article 

    Google Scholar
     

  • Salzberg SL, White O, Peterson J, Eisen JA. Microbial genes in the human genome: lateral transfer or gene loss? Science. 2001;292(5523):1903–6.

    Article 

    Google Scholar
     

  • Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, et al. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol. 2013;9(6): e1003107.

    Article 

    Google Scholar
     

  • Hall RJ, Whelan FJ, McInerney JO, Ou Y, Domingo-Sananes MR. Horizontal gene transfer as a source of conflict and cooperation in prokaryotes. Front Microbiol. 2020;11:1569.

    Article 

    Google Scholar
     

  • Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–18.

    Article 

    Google Scholar
     

  • Jain R, Rivera MC, Moore JE, Lake JA. Horizontal Gene Transfer Accelerates Genome Innovation and Evolution. Mol Biol Evol. 2003;20(10):1598–602.

    Article 

    Google Scholar
     

  • Wright O, Stan G-B, Ellis T. Building-in biosafety for synthetic biology. Microbiology. 2013;159(Pt_7):1221–35.

    Article 

    Google Scholar
     

  • Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, et al. Synthetic genetic polymers capable of heredity and evolution. Science. 2012;336(6079):341–4.

    Article 

    Google Scholar
     

  • Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11(5):508–20.

    Article 

    Google Scholar
     

  • Ceroni F, Algar R, Stan G-B, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015;12(5):415–8.

    Article 

    Google Scholar
     

  • Sleight SC, Bartley BA, Lieviant JA, Sauro HM. Designing and engineering evolutionary robust genetic circuits. J Biol Eng. 2010;4(1):12.

    Article 

    Google Scholar
     

  • Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods. 2013;10(7):659–64.

    Article 

    Google Scholar
     

  • Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN, et al. Burden-driven feedback control of gene expression. Nat Methods. 2018;15(5):387–93.

    Article 

    Google Scholar
     

  • Wan X, Pinto F, Yu L, Wang B. Synthetic protein-binding DNA sponge as a tool to tune gene expression and mitigate protein toxicity. Nat Commun. 2020;11(1):5961.

    Article 

    Google Scholar
     

  • Thattai M, Van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci. 2001;98(15):8614–9.

    Article 

    Google Scholar
     

  • Modi S, Dey S, Singh A. Noise suppression in stochastic genetic circuits using pid controllers. PLoS Comput Biol. 2021;17(7): e1009249.

    Article 

    Google Scholar
     

  • Guinn MT, Balázsi G. Noise-reducing optogenetic negative-feedback gene circuits in human cells. Nucleic Acids Res. 2019;47(14):7703–14.

    Article 

    Google Scholar
     

  • Del Vecchio D, Ninfa AJ, Sontag ED. Modular cell biology: retroactivity and insulation. Mol Syst Biol. 2008;4(1):161.

    Article 

    Google Scholar
     

  • Jayanthi S, Nilgiriwala KS, Del Vecchio D. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth Biol. 2013;2(8):431–41.

    Article 

    Google Scholar
     

  • Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, et al. Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng. 2009;3(1):1–13.

    Article 

    Google Scholar
     

  • Moser F, Broers NJ, Hartmans S, Tamsir A, Kerkman R, Roubos JA, et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth Biol. 2012;1(11):555–64.

    Article 

    Google Scholar
     

  • Saltepe B, Kehribar EŞ, Su Yirmibeşoğlu SS, Şafak Şeker UÖ. Cellular Biosensors with Engineered Genetic Circuits. ACS Sensors. 2018;3(1):13–26.

    Article 

    Google Scholar
     

  • Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946–50.

    Article 

    Google Scholar
     

  • Salis HM. The ribosome binding site calculator. Methods Enzymol. 2011;498:19–42. https://doi.org/10.1016/B978-0-12-385120-8.00002-4.

  • Clancy K, Voigt CA. Programming cells: towards an automated ‘Genetic Compiler.’ Curr Opin Biotechnol. 2010;21(4):572–81.

    Article 

    Google Scholar
     

  • Leaman EJ, Geuther BQ, Behkam B. Quantitative investigation of the role of intra-/intercellular dynamics in bacterial quorum sensing. ACS Synth Biol. 2018;7(4):1030–42.

    Article 

    Google Scholar
     

  • Leaman EJ, Sahari A, Traore MA, Geuther BQ, Morrow CM, Behkam B. Data-driven statistical modeling of the emergent behavior of biohybrid microrobots. APL bioengineering. 2020;4(1): 016104.

    Article 

    Google Scholar
     

  • Zhan Y, Fergusson A, McNally LR, Davis RM, Behkam B. Robust and Repeatable Biofabrication of Bacteria-Mediated Drug Delivery Systems: Effect of Conjugation Chemistry, Assembly Process Parameters, and Nanoparticle Size. Advanced Intelligent Systems. 2022;4(3):2100135.

    Article 

    Google Scholar
     

  • Suh S, Leaman EJ, Zhan Y, Behkam B. Mathematical modeling of bacteria-enabled drug delivery system penetration into multicellular tumor spheroids. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:6162–5.


    Google Scholar
     

  • Traoré MA, Sahari A, Behkam B. Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead. Phys Rev E. 2011;84(6): 061908.

    Article 

    Google Scholar
     

  • Yu J, Jin D, Chan K-F, Wang Q, Yuan K, Zhang L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun. 2019;10(1):5631.

    Article 

    Google Scholar
     

  • Gwisai T, Mirkhani N, Christiansen MG, Nguyen TT, Ling V, Schuerle S. Magnetic torque–driven living microrobots for increased tumor infiltration. Science Robotics. 2022;7(71):eabo0665.

    Article 

    Google Scholar
     

  • Charbonneau MR, Isabella VM, Li N, Kurtz CB. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun. 2020;11(1):1738.

    Article 

    Google Scholar
     

  • Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Science Translational Medicine. 2019;11(475):eaau7975.

    Article 

    Google Scholar
     

  • Martin-Betancor K, Durand M-J, Thouand G, Leganes F, Fernandez-Pinas F, Rodea-Palomares I. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring. Chemosphere. 2017;189:373–81.

    Article 

    Google Scholar
     

  • Prévéral S, Brutesco C, Descamps ECT, Escoffier C, Pignol D, Ginet N, et al. A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res. 2017;24(1):25–32.

    Article 

    Google Scholar
     

  • Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y. Survival rate of microbes after freeze-drying and long-term storage. Cryobiology. 2000;41(3):251–5.

    Article 

    Google Scholar
     

  • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157: H7 in the mouse intestine. PLoS One. 2013;8(1):e53957.

    Article 

    Google Scholar
     

  • Sheth RU, Yim SS, Wu FL, Wang HH. Multiplex recording of cellular events over time on CRISPR biological tape. Science. 2017;358(6369):1457–61.

    Article 

    Google Scholar
     

  • Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells. Science. 2018;360(6385):eaap8992.

    Article 

    Google Scholar
     

  • Liu X, Yuk H, Lin S, Parada GA, Tang T-C, Tham E, et al. 3D Printing of Living Responsive Materials and Devices. Adv Mater. 2018;30(4):1704821.

    Article 

    Google Scholar
     

  • Liu X, Tang T-C, Tham E, Yuk H, Lin S, Lu TK, et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc Natl Acad Sci. 2017;114(9):2200–5.

    Article 

    Google Scholar
     

  • Skonieczna-Żydecka K, Marlicz W, Misera A, Koulaouzidis A, Łoniewski I. Microbiome-the missing link in the gut-brain axis: focus on its role in gastrointestinal and mental health. J Clin Med. 2018;7(12):521.

    Article 

    Google Scholar
     

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75.

    Article 

    Google Scholar
     

  • Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, et al. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci. 2018;12:216.

    Article 

    Google Scholar
     

  • Liu RT, Rowan-Nash AD, Sheehan AE, Walsh RFL, Sanzari CM, Korry BJ, et al. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav Immun. 2020;88:308–24.

    Article 

    Google Scholar
     

  • Knecht LD, O’Connor G, Mittal R, Liu XZ, Daftarian P, Deo SK, et al. Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine. 2016;9:161–9.

    Article 

    Google Scholar
     

  • Kang S-R, Min J-J. Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging. 2021;55(1):7–14.

    Article 

    Google Scholar
     

  • Szöllösi J, Lockett SJ, Balázs M, Waldman FM. Autofluorescence correction for fluorescence in situ hybridization. Cytometry. 1995;20(4):356–61.

    Article 

    Google Scholar
     

  • Costa J, Ahluwalia A. Advances and current challenges in intestinal in vitro model engineering: a digest. Frontiers in bioengineering and biotechnology. 2019;7:144.

    Article 

    Google Scholar
     

  • Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol. 2021;112:808–22.

    Article 

    Google Scholar
     

  • Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article 

    Google Scholar
     

  • Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van Den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.

    Article 

    Google Scholar
     

  • Costello CM, Hongpeng J, Shaffiey S, Yu J, Jain NK, Hackam D, et al. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol Bioeng. 2014;111(6):1222–32.

    Article 

    Google Scholar
     

  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–74.

    Article 

    Google Scholar
     



  • Source link