Scientific Papers

Target identification of small molecules: an overview of the current applications in drug discovery | BMC Biotechnology


  • Schenone M, Dančík V, Wagner BK, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9:232–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFedries A, Schwaid A, Saghatelian A. Methods for the elucidation of protein-small molecule interactions. Chem Biol. 2013;20:667–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162:1239–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picci G, Marchesan S, Caltagirone C. Ion channels and transporters as therapeutic agents: from biomolecules to supramolecular medicinal chemistry. Biomedicines. 2022;10:885.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moumné L, Marie A-C, Crouvezier N. Oligonucleotide therapeutics: from discovery and development to patentability. Pharmaceutics. 2022;14:260.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Z, Li C, Chen P, et al. An update of label-free protein target identification methods for natural active products. Theranostics. 2022;12:1829.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziegler S, Pries V, Hedberg C, et al. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed. 2013;52:2744–92.

    Article 
    CAS 

    Google Scholar
     

  • Seo S-Y, Corson TW. Small molecule target identification using photo-affinity chromatography. Methods in enzymology. Elsevier. 2019. p. 347–74. https://pubmed.ncbi.nlm.nih.gov/31155061/https://doi.org/10.1016/bs.mie.2019.02.028.

  • Smith E, Collins I. Photoaffinity labeling in target-and binding-site identification. Future Med Chem. 2015;7:159–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chem Biol. 2011;6:34–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenmalm Jensen A, Cornella Taracido I. Affinity-Based Chemoproteomics for Target Identification. Target Discovery and Validation: Methods and Strategies for Drug Discovery. 2019. p. 25–49. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527818242.ch2https://doi.org/10.1002/9783527818242.ch2.

  • Dai L, Li Z, Chen D, et al. Target identification and validation of natural products with label-free methodology: a critical review from 2005 to 2020. Pharmacol Ther. 2020;216:107690.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha J, Park H, Park J, et al. Recent advances in identifying protein targets in drug discovery. Cell Chem Biology. 2021;28:394–423.

    Article 
    CAS 

    Google Scholar
     

  • Van der Zouwen AJ, Witte MD. Modular approaches to synthesize activity-and affinity-based chemical probes. Front Chem. 2021;9:644811.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang S, Wang F-J, Lin H, et al. Affinity-based protein profiling to reveal targets of puerarin involved in its protective effect on cardiomyocytes. Biomed Pharmacother. 2021;134:111160.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato S, Murata A, Shirakawa T, et al. Biochemical target isolation for novices: affinity-based strategies. Chem Biol. 2010;17:616–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das RK, Samanta A, Ghosh K, et al. Target identification: a challenging step in forward chemical genetics. Interdisciplinary Bio Central. 2011;3:3–1.

    Article 

    Google Scholar
     

  • Khersonsky SM, Jung D-W, Kang T-W, et al. Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J Am Chem Soc. 2003;125:11804–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon YJ, Kim Y, Lee Y, et al. 2′-Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation. Cancer Sci. 2019;110:366–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao D, Pan D, Zhen Y, et al. Ferulin C triggers potent PAK1 and p21-mediated anti-tumor effects in breast cancer by inhibiting tubulin polymerization in vitro and in vivo. Pharmacol Res. 2020;152:104605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Bi Y, Zhong J, et al. 10, 11-dehydrocurvularin exerts antitumor effect against human breast cancer by suppressing STAT3 activation. Acta Pharmacol Sin. 2021;42:791–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Yoon YJ, Jeon YJ, et al. Geranylnaringenin (CG902) inhibits constitutive and inducible STAT3 activation through the activation of SHP-2 tyrosine phosphatase. Biochem Pharmacol. 2017;142:46–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neggers JE, Kwanten B, Dierckx T, et al. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat Commun. 2018;9:502.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pries V, Nöcker C, Khan D, et al. Target identification and mechanism of action of picolinamide and benzamide chemotypes with antifungal properties. Cell Chem Biology. 2018;25:279–90.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Tang Z, Selvaraju M, et al. Cellular Target Deconvolution of Small Molecules using a selection-based genetic screening platform. ACS Cent Sci. 2022;8:1424–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanoh N, Honda K, Simizu S, et al. Photo-cross‐linked small‐molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew Chem. 2005;117:3625–8.

    Article 

    Google Scholar
     

  • Leslie BJ, Hergenrother PJ. Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem Soc Rev. 2008;37:1347–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato S, Kwon Y, Kamisuki S, et al. Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc. 2007;129:873–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong T, McMillan M, Teo JL, et al. Chemogenomic Investigation of AP-1 transcriptional regulation of LTC4 synthase expression. Lett Drug Des Discovery. 2004;1:211–6.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, Wong N, Watanabe E, et al. Mechanisms and minimization of false Discovery of metabolic bioorthogonal noncanonical amino acid proteomics. Rejuven Res. 2022;25:95–109.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Israel DI. Target protein design and preselection analysis. DNA-Encoded chemical libraries: methods and protocols. Springer; 2022. pp. 143–54.

  • Holmberg A, Blomstergren A, Nord O, et al. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis. 2005;26:501–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manthey KC, Griffin JB, Zempleni J. Biotin supply affects expression of biotin transporters, biotinylation of carboxylases and metabolism of interleukin-2 in jurkat cells. J Nutr. 2002;132:887–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Melendez R, Camporeale G, Griffin JB, et al. Interleukin-2 receptor-γ-dependent endocytosis depends on biotin in jurkat cells. Am J Physiology-Cell Physiol. 2003;284:C415–21.

    Article 
    CAS 

    Google Scholar
     

  • Cuatrecasas P. Protein purification by affinity chromatography: derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970;245:3059–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murale DP, Hong SC, Haque MM, et al. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 2016;15:1–34.

    Article 

    Google Scholar
     

  • Vodovozova E. Photoaffinity labeling and its application in structural biology. Biochem (Moscow). 2007;72:1–20.

    Article 
    CAS 

    Google Scholar
     

  • Fleming SA. Chemical reagents in photoaffinity labeling. Tetrahedron. 1995;51:12479–520.

    Article 
    CAS 

    Google Scholar
     

  • Dubinsky L, Krom BP, Meijler MM. Diazirine based photoaffinity labeling. Bioorg Med Chem. 2012;20:554–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou DH-C, Vetere A, Choudhary A, et al. Kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc. 2015;137:7929–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadaghiani AM, Verhelst SH, Bogyo M. Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol. 2007;11:20–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moser BH. Photoaffinity labelling of alpha-synuclein using diazirine-functionalized caffeine, nicotine, and 1-aminoindan. 2020.

  • West AV, Amako Y, Woo CM. Design and evaluation of a cyclobutane Diazirine Alkyne tag for photoaffinity labeling in cells. J Am Chem Soc. 2022;144:21174–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumranjit J, Chung SJ. Recent advances in target characterization and identification by photoaffinity probes. Molecules. 2013;18:10425–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson K, Zhu S, Tremblay MS, et al. A stem cell–based approach to cartilage repair. Science. 2012;336:717–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez OD, Chang Y-T, Rosania G, et al. Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem Biol. 2002;9:475–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wang Y, Ma N, et al. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Therapy. 2020;5:72.

    Article 

    Google Scholar
     

  • YoungáKoo J, Yellamelli V, BumáPark S. Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells. Chem Commun. 2016;52:5828–31.

    Article 

    Google Scholar
     

  • Masuma R, Kashima S, Kurasaki M, et al. Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells. J Photochem Photobiol B. 2013;125:202–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Research/Fundamental Mol Mech Mutagen. 2005;571:3–17.

    Article 
    CAS 

    Google Scholar
     

  • Han S-Y, Choi SH, Kim MH, et al. Design and synthesis of novel photoaffinity reagents for labeling VEGF receptor tyrosine kinases. Tetrahedron Lett. 2006;47:2915–9.

    Article 
    CAS 

    Google Scholar
     

  • Park J, Koh M, Koo JY, et al. Investigation of specific binding proteins to photoaffinity linkers for efficient deconvolution of target protein. ACS Chem Biol. 2016;11:44–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Liu C, He W. Fluorophores and their applications as molecular probes in living cells. Curr Org Chem. 2013;17:564–79.

    Article 
    CAS 

    Google Scholar
     

  • Lamos SM, Krusemark CJ, McGee CJ, et al. Mixed isotope photoaffinity reagents for identification of small-molecule targets by mass spectrometry. Angew Chem. 2006;118:4435–9.

    Article 

    Google Scholar
     

  • Lill JR, Mathews WR, Rose CM, et al. Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade. Expert Rev Proteomics. 2021;18:503–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Peng X, Guo Y, et al. Currently available strategies for target identification of bioactive natural products. Front Chem. 2021;9:761609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniuchi H, Moravek L, Anfinsen C. Ligand-induced resistance of staphylococcal nuclease and nuclease-T to proteolysis by subtilisin, α-chymotrypsin, and thermolysin. J Biol Chem. 1969;244:4600–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybak J, Scheurer SB, Neri D, et al. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics. 2004;4:2296–9. https://pubmed.ncbi.nlm.nih.gov/15274123/. https://doi.org/10.1002/pmic.200300780.

  • Markus G, McClintock DK, Castellani BA. Ligand-stabilized conformations in serum albumin. J Biol Chem. 1967;242:4402–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Guo Z, Song T, et al. Proteome-wide identification of On‐and off‐targets of Bcl‐2 inhibitors in native Biological Systems by using Affinity‐Based Probes (AfBPs). ChemBioChem. 2018;19:2312–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West GM, Tang L, Fitzgerald MC. Thermodynamic analysis of protein stability and ligand binding using a chemical modification-and mass spectrometry-based strategy. Anal Chem. 2008;80:4175–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strickland EC, Geer MA, Tran DT, et al. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc. 2013;8:148–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrera A, Wiebelhaus N, Quan B, et al. Comparative analysis of mass-spectrometry-based proteomic methods for protein target discovery using a one-pot approach. J Am Soc Mass Spectrom. 2019;31:217–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur U, Meng H, Lui F, et al. Proteome-wide structural biology: an emerging field for the structural analysis of proteins on the proteomic scale. J Proteome Res. 2018;17:3614–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molina DM, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article 
    CAS 

    Google Scholar
     

  • Jafari R, Almqvist H, Axelsson H, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014;9:2100–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tolvanen TA. Current advances in CETSA. Front Mol Biosci. 2022;9.

  • Henderson MJ, Holbert MA, Simeonov A, et al. High-throughput cellular thermal shift assays in research and drug discovery. SLAS DISCOVERY: Advancing the Science of Drug Discovery. 2020;25:137–47.

    Article 

    Google Scholar
     

  • Rasul A, Riaz A, Sarfraz I, et al. Target Identification Approaches in Drug Discovery. Drug Target Selection and Validation. Springer; 2022. pp. 41–59.

  • Donovan KF, Hegde M, Sullender M, et al. Creation of novel protein variants with CRISPR/Cas9-mediated mutagenesis: turning a screening by-product into a discovery tool. PLoS ONE. 2017;12:e0170445.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubin AS, Rueda-Zubiaurre A, Matthews H, et al. Development of a photo-cross-linkable diaminoquinazoline inhibitor for target identification in Plasmodium falciparum. ACS Infect Dis. 2018;4:523–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Broeck WM. Drug targets, Target Identification, Validation, and screening. The practice of Medicinal Chemistry. Elsevier; 2015. pp. 45–70.

  • Park Y-D, Sun W, Salas A, et al. Identification of multiple cryptococcal fungicidal drug targets by combined gene dosing and drug affinity responsive target stability screening. MBio. 2016;7:e01073–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasap C, Elemento O, Kapoor TM. DrugTargetSeqR: a genomics-and CRISPR-Cas9–based method to analyze drug targets. Nat Chem Biol. 2014;10:626–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aza-Blanc P, Cooper CL, Wagner K, et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell. 2003;12:627–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muellner MK, Uras IZ, Gapp BV, et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol. 2011;7:787–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Y, Zheng Y, Gu J, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis. 2018;9:636.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, Gharbi N, Yuan X, et al. Axitinib blocks Wnt/β-catenin signaling and directs asymmetric cell division in cancer. Proc Natl Acad Sci. 2016;113:9339–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogburn RN, Jin L, Meng H, et al. Discovery of tamoxifen and N-desmethyl tamoxifen protein targets in MCF-7 cells using large-scale protein folding and stability measurements. J Proteome Res. 2017;16:4073–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirota T, Lee JW, St. John PC, et al. Identification of small molecule activators of cryptochrome. Science. 2012;337:1094–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosania GR, Chang Y-T, Perez O, et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol. 2000;18:304–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang Y-T, Gray NS, Rosania GR, et al. Synthesis and application of functionally diverse 2, 6, 9-trisubstituted purine libraries as CDK inhibitors. Chem Biol. 1999;6:361–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams D, Jung D-W, Khersonsky SM, et al. Identification of compounds that bind mitochondrial F1F0 ATPase by screening a triazine library for correction of albinism. Chem Biol. 2004;11:1251–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snyder JR, Hall A, Ni-Komatsu L, et al. Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol. 2005;12:477–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee MY, Kim MH, Kim J, et al. Synthesis and SAR of sulfonyl-and phosphoryl amidine compounds as anti-resorptive agents. Bioorg Med Chem Lett. 2010;20:541–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang S-Y, Bae SJ, Lee MY, et al. Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorg Med Chem Lett. 2011;21:727–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding S, Wu TY, Brinker A, et al. Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci. 2003;100:7632–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wignall SM, Gray NS, Chang Y-T, et al. Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol. 2004;11:135–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min J, Kyung Kim Y, Cipriani PG, et al. Forward chemical genetic approach identifies new role for GAPDH in insulin signaling. Nat Chem Biol. 2007;3:55–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Shamji A, Matchacheep S, et al. Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening. Chem Biol. 2007;14:371–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Do JT, Zhang Q, et al. Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci. 2006;103:17266–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Major MB, Takanashi S, et al. Small-molecule synergist of the Wnt/β-catenin signaling pathway. Proc Natl Acad Sci. 2007;104:7444–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bargagna-Mohan P, Hamza A, Kim Y, et al. The tumor inhibitor and antiangiogenic agent withaferin a targets the intermediate filament protein vimentin. Chem Biol. 2007;14:623–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu S, Wurdak H, Wang J, et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagumo Y, Kakeya H, Shoji M, et al. Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J. 2005;387:835–40. https://doi.org/10.1042/BJ20041355.

  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289:1760–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi Y, Shimogawa H, Murakami K, et al. Chemical genetic identification of the IGF-linked pathway that is mediated by STAT6 and MFP2. Chem Biol. 2006;13:241–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao M, Nettles RE, Belema M, et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature. 2010;465:96–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee H, Lee JW. Target identification for biologically active small molecules using chemical biology approaches. Arch Pharm Res. 2016;39:1193–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen C, Ma H, Kim D, et al. A small molecule inhibitor of-catenin/CREB-binding protein transcription. Proc Natl Acad Sci USA. 2004;101:12682–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotake Y, Sagane K, Owa T, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3:570–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacKinnon AL, Garrison JL, Hegde RS, et al. Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc. 2007;129:14560–1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Dong T, Zhou Y, et al. Exploring the binding proteins of glycolipids with bifunctional chemical probes. Angew Chem Int Ed. 2016;55:14330–4.

    Article 
    CAS 

    Google Scholar
     

  • Li BX, Chen J, Chao B, et al. Anticancer pyrroloquinazoline LBL1 targets nuclear lamins. ACS Chem Biol. 2018;13:1380–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D, Guo H, Chang Y, et al. Cell-and tissue‐based proteome profiling and dual imaging of apoptosis markers with probes derived from Venetoclax and Idasanutlin. Angew Chem Int Ed. 2018;57:9284–9.

    Article 
    CAS 

    Google Scholar
     

  • Arai MA, Taguchi S, Komatsuzaki K, et al. Valosin-containing protein is a target of 5′‐l fuligocandin B and enhances TRAIL resistance in cancer cells. ChemistryOpen. 2016;5:574–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theodoropoulos PC, Gonzales SS, Winterton SE, et al. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol. 2016;12:218–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Nam Y, Koo JY, et al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat Chem Biol. 2014;10:1055–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeuchi T, Schumacker PT, Kozmin SA. Identification of fumarate hydratase inhibitors with nutrient-dependent cytotoxicity. J Am Chem Soc. 2015;137:564–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fung SK, Zou T, Cao B, et al. Cyclometalated Gold (III) Complexes containing N-Heterocyclic carbene ligands engage multiple anti‐Cancer molecular targets. Angew Chem Int Ed. 2017;56:3892–6.

    Article 
    CAS 

    Google Scholar
     

  • Lim B, Lee J, Kim B, et al. Target Identification of a 1, 3, 4-Oxadiazin‐5 (6H)‐One Anticancer Agent via photoaffinity labelling. Asian J Org Chem. 2019;8:1626–30.

    Article 
    CAS 

    Google Scholar
     

  • Tulloch LB, Menzies SK, Fraser AL, et al. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl Trop Dis. 2017;11:e0005886.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Cao L, Gao H, et al. Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors. J Med Chem. 2019;62:4056–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Wong Y, Zhang J et al. Drug target identification using an iTRAQ-based quantitative chemical proteomics approach—based on a target profiling study of andrographolide. Methods in Enzymology. Elsevier; 2017. p. 291–309.

  • Morretta E, Esposito R, Festa C, et al. Discovering the biological target of 5-epi-sinuleptolide using a combination of proteomic approaches. Mar Drugs. 2017;15:312.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci. 2009;106:21984–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamin D, Colombi M, Hindupur SK, et al. Syrosingopine sensitizes cancer cells to killing by metformin. Sci Adv. 2016;2:e1601756. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5182053/. https://doi.org/10.1126/sciadv.1601756.

  • Qu Y, Olsen JR, Yuan X, et al. Small molecule promotes β-catenin citrullination and inhibits wnt signaling in cancer. Nat Chem Biol. 2018;14:94–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Wang Q, Tang H, et al. Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of β-catenin stabilization in cancer stem cells. J Experimental Clin Cancer Res. 2017;36:1–19. https://pubmed.ncbi.nlm.nih.gov/29197410/. https://doi.org/10.1186/s13046-017-0635-9.

  • Muthukumar Y, Münkemer J, Mathieu D, et al. Investigations on the mode of action of gephyronic acid, an inhibitor of eukaryotic protein translation from myxobacteria. PLoS ONE. 2018;13:e0201605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Zhou S, Qi D, et al. Nucleolin is a functional binding protein for salinomycin in neuroblastoma stem cells. J Am Chem Soc. 2019;141:3613–22. https://pubmed.ncbi.nlm.nih.gov/30689374/. https://doi.org/10.1021/jacs.8b12872.

  • Esch S, König S, Bopp B, et al. Cryptotanshinone from Salvia miltiorrhiza roots reduces Cytokeratin CK1/10 expression in keratinocytes by activation of Peptidyl-prolyl-cis-trans-isomerase FKBP1A. Planta Med. 2019;85:552–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Y, Lee K, Deng Y, et al. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun. 2019;10:4523.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geer Wallace MA, Kwon D-Y, Weitzel DH, et al. Discovery of manassantin A protein targets using large-scale protein folding and stability measurements. J Proteome Res. 2016;15:2688–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link