Scientific Papers

Metabolic shift toward ketosis in asocial cavefish increases social-like affinity | BMC Biology


  • McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156(1):1–18.

    Article 
    PubMed 

    Google Scholar
     

  • Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci. 2016;19(5):734–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filosa A, Barker AJ, Dal Maschio M, Baier H. Feeding state modulates behavioral choice and processing of prey stimuli in the Zebrafish Tectum. Neuron. 2016;90(3):596–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solianik R, Sujeta A, Terentjevienė A, Skurvydas A. Effect of 48 h fasting on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Biomed Res Int. 2016;2016(5):1–8.

    Article 

    Google Scholar
     

  • Fokidis HB, Prior NH, Soma KK. Fasting increases aggression and differentially modulates local and systemic steroid levels in male zebra finches. Endocrinology. 2013;154(11):4328–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakajo H, Chou MY, Kinoshita M, Appelbaum L, Shimazaki H, Tsuboi T, et al. Hunger potentiates the habenular winner pathway for social conflict by orexin-promoted biased alternative splicing of the AMPA receptor gene. Cell Rep. 2020;31(12):107790.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr. 2013;67(7):759–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deemer SE, Plaisance EP, Martins C. Impact of ketosis on appetite regulation—a review. Nutr Res. 2020;77:1–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig DS. The ketogenic diet: evidence for optimism but high-quality research needed. J Nutr. 2020;150(6):1354–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ruskin DN, Masino SA. The nervous system and metabolic dysregulation: Emerging evidence converges on ketogenic diet therapy. Front Neurosci. 2012;6(MAR):1–12.


    Google Scholar
     

  • Lee RWY, Corley MJ, Pang A, Arakaki G, Abbott L, Nishimoto M, et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav. 2018;1(188):205–11.

    Article 

    Google Scholar
     

  • Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov Disord. 2018;33(8):1306–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald TJW, Cervenka MC. Ketogenic diets for adult neurological disorders. Neurotherapeutics. 2018;15(4):1018–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellisari A. Evolutionary origins of obesity. Obes Rev. 2008;9(2):165–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin L, Ma K, Yan Z. Rescue of histone hypoacetylation and social deficits by ketogenic diet in a shank3 mouse model of autism. Neuropsychopharmacology. 2021;(October):1–9.

  • Duboué ER, Borowsky RL, Keene AC. β-adrenergic signaling regulates evolutionarily derived sleep loss in the Mexican cavefish. Brain Behav Evol. 2012;80(4):233–43.

    Article 
    PubMed 

    Google Scholar
     

  • Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci USA. 2015;112(31):9668–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Parkhurst A, Jeffery WR. The role of a lens survival pathway including sox2 and αA-crystallin in the evolution of cavefish eye degeneration. EvoDevo. 2014;5(1):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keene AC, Yoshizawa M, McGaugh SE. Biology and Evolution of the Mexican Cavefish. In: Keene AC, Yoshizawa M, McGaugh SE, editors. Biology and Evolution of the Mexican Cavefish. Amsterdam: Elsevier Inc.; 2016. p. 397.


    Google Scholar
     

  • Duboué ER, Keene AC, Borowsky RL. Evolutionary convergence on sleep loss in cavefish populations. Curr Biol. 2011;21(8):671–6.

    Article 
    PubMed 

    Google Scholar
     

  • Bilandžija H, Ma L, Parkhurst A, Jeffery WR. A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. Escriva H, editor. PLoS ONE. 2013;8(11):e80823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaggard JB, Stahl BA, Lloyd E, Duboue ER, Keene AC, Prober DA, et al. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. eLife. 2017 [cited 7 Jul 2017];7. Available from: https://elifesciences.org/articles/32637.

  • Bilandžija H, Abraham L, Ma L, Renner KJ, Jeffery WR. Behavioural changes controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish. Proc Biol Sci. 1878;2018(285):20180243.


    Google Scholar
     

  • Riddle MR, Aspiras AC, Gaudenz K, Peuß R, Sung JY, Martineau B, et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature. 2018;555(7698):647–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strickler AG, Byerly MS, Jeffery WR. Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone alpha A-crystallin during cavefish eye degeneration. Dev Genes Evol. 2007;217(11–12):771–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 2014;5(1):5307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohner N, Jarosz DFDF, Kowalko JEJE, Yoshizawa M, Jeffery WRWR, Borowsky RLRL, et al. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science. 2013;342(6164):1372–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Gorman M, Thakur S, Imrie G, Moran RL, Choy S, Sifuentes-Romero I, et al. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr Biol. 2021;31(16):3694-3701.e4.

    Article 
    PubMed 

    Google Scholar
     

  • Fumey J, Hinaux H, Noirot C, Thermes C, Rétaux S, Casane D. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol Biol. 2018;18(1):43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol. 2018;27(22):4397–416.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshizawa M, Settle A, Hermosura MCM, Tuttle LJL, Cetraro N, Passow CNCN, et al. The Evolution of a Series of Behavioral Traits is associated with Autism-Risk Genes in Cavefish. BMC Evol Biol. 2018;18(1):89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshizawa M. Behaviors of cavefish offer insight into developmental evolution. Mol Reprod Dev. 2015;82(4):268–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwashita M, Yoshizawa M. Social-like responses are inducible in asocial Mexican cavefish despite the exhibition of strong repetitive behavior. Elife. 2021;10:e72463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinasa L, Heintz C, Rétaux S, Yoshisawa M, Agnès F, Ornelas-Garcia P, et al. Vibration attraction response is a plastic trait in blind Mexican tetra (Astyanax mexicanus), variable within subpopulations inhabiting the same cave. J Fish Biol. 2021;98(1):304–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong S, Krishnan J, Peuß R, Rohner N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev Biol. 2018;441(2):297–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong S, Wang W, Kenzior A, Olsen L, Krishnan J, Persons J, et al. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Current Biology. 2022;32(10):2272–80.

  • Huppop K. Oxygen-Consumption of Astyanax-Fasciatus (Characidae, Pisces) – a Comparison of Epigean and Hypogean Populations. Environ Biol Fishes. 1986;17(4):299–308.

    Article 

    Google Scholar
     

  • Moran D, Softley R, Warrant EJ. Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS ONE. 2014;9(9):e107877.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran D, Softley R, Warrant EJ. The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv. 2015;1(8):e1500363.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalko JE, Rohner N, Rompani SB, Peterson BK, Linden TA, Yoshizawa M, et al. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr Biol. 2013;23(19):1874–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patch A, Paz A, Holt KJ, Duboué ER, Keene AC, Kowalko JE, et al. Kinematic analysis of social interactions deconstructs the evolved loss of schooling behavior in cavefish. PLoS ONE. 2022;17(4):e0265894.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierre C, Pradere N, Froc C, Ornelas-Garcıá P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol. 2020;223(18):jeb226092.

  • Elipot Y, Hinaux H, Callebert J, Rétaux S. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr Biol. 2013;23(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helt MS, Fein DA, Vargas JE. Emotional contagion in children with autism spectrum disorder varies with stimulus familiarity and task instructions. Dev Psychopathol. 2020;32(1):383–93.

    Article 
    PubMed 

    Google Scholar
     

  • Runco MA, Charlop MH, Schreibman L. The occurrence of autistic children’s self-stimulation as a function of familiar versus unfamiliar stimulus conditions. J Autism Dev Disord. 1986;16(1):31–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Provenzano G, Corradi Z, Monsorno K, Fedrizzi T, Ricceri L, Scattoni ML, et al. Comparative gene expression analysis of two mouse models of autism: transcriptome profiling of the BTBR and En2-/- Hippocampus. Front Neurosci. 2016;10(AUG):396.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee Y, Kang H, Jin C, Zhang Y, Kim Y, Han K. Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Anim Cells Syst. 2019;23(4):270–4.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Liang J, Fu N, Han Y, Qin J. A ketogenic diet and the treatment of autism spectrum disorder. Front Pediatr. 2021;9(May):1–7.

    CAS 

    Google Scholar
     

  • Napoli E, Dueñas N, Giulivi C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front Pediatr. 2014;2(JUN):1–9.


    Google Scholar
     

  • Evangeliou A, Vlanchonikolis I, Mihailidou H, Vlachonikolis I, Mihailidou H, Spilioti M, et al. Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol. 2003;18(2):113–8.

    Article 
    PubMed 

    Google Scholar
     

  • Fernández-Hernández I, Scheenaard E, Pollarolo G, Gonzalez C. The translational relevance of Drosophila in drug discovery. EMBO Rep. 2016;17(4):471–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: A simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab. 2015;12(1):1–7.

    Article 
    CAS 

    Google Scholar
     

  • Comesaña S, Velasco C, Conde-Sieira M, Otero-Rodiño C, Míguez JM, Soengas JL. Central treatment of ketone body in rainbow trout alters liver metabolism without apparently altering the regulation of food intake. Front Physiol. 2019;18(10):1206.

    Article 

    Google Scholar
     

  • Hagihara K, Kajimoto K, Osaga S, Nagai N, Shimosegawa E, Nakata H, et al. Promising effect of a new ketogenic diet regimen in patients with advanced cancer. Nutrients. 2020;12(5):1473.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paffenhöfer GA. Caloric content of larvae of the brine shrimpArtemia salina. Helgoländer Meeresun. 1967;16(1–2):130–5.

    Article 

    Google Scholar
     

  • Yoshizawa M, Gorički S, Soares D, Jeffery WR. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 2010;20(18):1631–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB, O’Quin KE, et al. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol. 2015;13(1):15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaggard JB, Lloyd E, Yuiska A, Patch A, Fily Y, Kowalko JE, et al. Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Sci Adv. 2020;6(38):3126–42.

    Article 

    Google Scholar
     

  • Langen M, Kas MJH, Staal WG, van Engeland H, Durston S. The neurobiology of repetitive behavior: of mice…. Neurosc Biobehav Rev. 2011;35(3):345–55.

    Article 

    Google Scholar
     

  • Langen M, Durston S, Kas MJH, van Engeland H, Staal WG. The neurobiology of repetitive behavior: …and men. Neurosci Biobehav Rev. 2011;35(3):356–65.

    Article 
    PubMed 

    Google Scholar
     

  • Campbell SS, Tobler I. Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev. 1984;8(3):269–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol. 2017;595(9):2857–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016;24(2):256–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63(3):401–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coppola G, Verrotti A, Ammendola E, Operto FF, Della Corte R, Signoriello G, et al. Ketogenic diet for the treatment of catastrophic epileptic encephalopathies in childhood. Eur J Paediatr Neurol. 2010;14(3):229–34.

    Article 
    PubMed 

    Google Scholar
     

  • Olivito I, Avolio E, Minervini D, Soda T, Rocca C, Angelone T, et al. Ketogenic diet ameliorates autism spectrum disorders-like behaviors via reduced inflammatory factors and microbiota remodeling in BTBR T+ Itpr3tf/J mice. Exp Neurol. 2023;366:114432.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mychasiuk R, Rho JM. Genetic modifications associated with ketogenic diet treatment in the BTBR T+Tf/J mouse model of autism spectrum disorder: Genetic modifications associated with ketogenic diet treatment. Autism Res. 2017;10(3):456–71.

    Article 
    PubMed 

    Google Scholar
     

  • Vallée A, Vallée JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain. 2018;11(1):1–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krautkramer KA, Dhillon RS, Denu JM, Carey HV. Metabolic programming of the epigenome: Host and gut microbial metabolite interactions with host chromatin. Transl Res. 2017;189:30–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol. 2015;25(5):682–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross JB, Furterer A, Carlson BM, Stahl BA. An integrated transcriptome-wide analysis of cave and surface dwelling Astyanax mexicanus. PLoS ONE. 2013;8(2):e55659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis AE, et al. An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol. 2018;2(7):1155–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet. 2014;23(6):1563–78.

    Article 
    PubMed 

    Google Scholar
     

  • Gallo ND, Jeffery WR. Evolution of space dependent growth in the teleost Astyanax mexicanus. PLoS ONE. 2012;7:e41443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell LA, Hofmann HA. Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Front Neuroendocrinol. 2011;32(3):320–35.

    Article 
    PubMed 

    Google Scholar
     

  • O’Connell LA, Hofmann HA. Evolution of a vertebrate social decision-making network. Science. 2012;336(6085):1154–7.

    Article 
    PubMed 

    Google Scholar
     

  • Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540(7633):423–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus : candidate gene identification through integrative comparative genomics. Evol Dev. 2016;18(1):7–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl BA, Gross JB. A comparative transcriptomic analysis of development in two Astyanax cavefish populations. J Exp Zool B Mol Dev Evol. 2017;328(6):515–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Culver DC, Pipan T. The biology of caves and other subterranean habitats. The biology of habitats series. Oxford: Oxford University Press; 2009. p. 254.


    Google Scholar
     

  • Espinasa L, Bonaroti N, Wong J, Pottin K, Queinnec E, Rétaux S. Contrasting feeding habits of post-larval and adult Astyanax cavefish. Subterranean Biology. 2017;21:1–17.

    Article 

    Google Scholar
     

  • Polakof S, Panserat S, Soengas JL, Moon TW. Glucose metabolism in fish: a review. J Comp Physiol [B]. 2012;182(8):1015–45.

    Article 
    CAS 

    Google Scholar
     

  • van der Weele CM, Jeffery WR. Cavefish cope with environmental hypoxia by developing more erythrocytes and overexpression of hypoxia inducible genes. eLife. 2022[cited 17 Jan 2022];11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34984980.

  • Boggs TE, Friedman JS, Gross JB. Alterations to cavefish red blood cells provide evidence of adaptation to reduced subterranean oxygen. Sci Rep. 2022;12(1):1–10.

    Article 

    Google Scholar
     

  • Medley JK, Persons J, Biswas T, Olsen L, Peuß R, Krishnan J, et al. The metabolome of Mexican cavefish shows a convergent signature highlighting sugar, antioxidant, and Ageing-Related metabolites. Elife. 2022;11:1–25.

    Article 

    Google Scholar
     

  • Yao J, Chen S, Mao Z, Cadenas E, Brinton RD. 2-deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS ONE. 2011;6(7):e21788.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chauhan A, Gu F, Chauhan V. Mitochondrial respiratory chain defects in autism and other neurodevelopmental disorders. J Pediatr Biochem. 2012;2(4):213–23.

    Article 

    Google Scholar
     

  • Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elipot Y, Legendre L, Père S, Sohm F, Rétaux S. Astyanax transgenesis and husbandry: how cavefish enters the laboratory. Zebrafish. 2014;11(4):291–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. IdTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014;11(7):743–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yoshizawa M, Yamamoto Y, O’Quin KE, Jeffery WR. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 2012;10(1):108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In: Behavior Research Methods. 2007. 175–91. Available from: https://doi.org/10.3758/BF03193146. Springer [cited 29 Nov 2020].

  • Erdfelder E, FAul F, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. 2009;41(4):1149–60.

  • Holm S. A simple sequentially rejective multiple test procedure. Scand J Statist. 1979;6:65–70.

  • Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.

  • Fox J, Weisberg S. An R companion to applied regression. [cited 13 June 2020]. 577 p. Available from: https://us.sagepub.com/en-us/nam/an-r-companion-to-applied-regression/book246125.

  • Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82(13):1–26.

  • Iwashita M, Tran A, Garcia M, Cashon J, Burbano D, Salgado V, Hasegawa M, Balmilero-Unciano R, Politan K, Wong M, Lee RWY, Yoshizawa M. Dataset: Metabolic shift toward ketosis in asocial cavefish increases social-like affinity -1. Zenodo https://zenodo.org/record/8401334 (2023).

  • Iwashita M, Tran A, Garcia M, Cashon J, Burbano D, Salgado V, Hasegawa M, Balmilero-Unciano R, Politan K, Wong M, Lee RWY, Yoshizawa M. Dataset: Metabolic shift toward ketosis in asocial cavefish increases social-like affinity -2. Zenodo https://zenodo.org/record/8404036 (2023).

  • Iwashita M. Social-like responses are inducible in the asocial and blind Mexican cavefish despite the continued exhibition of strong repetitive behaviour. Zenodo.2020. https://doi.org/10.5281/zenodo.4044524.

  • Iwashita M, Tran A, Garcia M, Cashon J, Burbano D, Salgado V, Hasegawa M, Balmilero-Unciano R, Politan K, Wong M, Lee RWY, Yoshizawa M. Metabolic shift toward ketosis in asocial cavefish increases social-like collective behavior. Zenodo. https://zenodo.org/record/8137637.

  • Gross JB, Borowsky R, Tabin CJ. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 2009;5(1):e1000326. https://doi.org/10.1371/journal.pgen.1000326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Anders S, Kim V, Huber W, Love MI, Anders S, et al. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research. 2016;4:1070.

    Article 

    Google Scholar
     

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link