Scientific Papers

Movement patterns of a small-bodied minnow suggest nomadism in a fragmented, desert river | Movement Ecology


  • Hoagstrom CW. Habitat loss and subdivision are additive mechanisms of fish extinction in fragmented rivers. Glob Change Biol. 2015;21:4–5.

    Article 

    Google Scholar
     

  • Winston MR, Taylor CM, Pigg J. Upstream extirpation of four minnow species due to damming of a prairie stream. Trans Am Fish Soc. 1991;120:98–105.

    Article 

    Google Scholar
     

  • Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E, Hendrickson DA, et al. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries (Bethesda). 2008;33:372–407.

    Article 

    Google Scholar
     

  • Pennock CA, Gido KB, Perkin JS, Weaver VD, Davenport SR, Caldwell JM. Collapsing range of an endemic Great Plains Minnow, Peppered Chub Macrhybopsis tetranema. Am Midl Nat. 2017;177:57–68.

    Article 

    Google Scholar
     

  • Perkin JS, Starks TA, Pennock CA, Gido KB, Hopper GW, Hedden SC. Extreme drought causes fish recruitment failure in a fragmented Great Plains riverscape. Ecohydrology. 2019. https://doi.org/10.1002/eco.2120.

    Article 

    Google Scholar
     

  • Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA. Conserving mobile species. Front Ecol Environ. 2014;12:395–402.

    Article 

    Google Scholar
     

  • Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, et al. The movement ecology of fishes. J Fish Biol. 2022;101:756–79.

    Article 
    PubMed 

    Google Scholar
     

  • Comte L, Olden JD. Fish dispersal in flowing waters: a synthesis of movement- and genetic-based studies. Fish Fish. 2018;19:1063–77.

    Article 

    Google Scholar
     

  • Dean EM, Cooper AR, Wang L, Daniel W, David S, Ernzen C, et al. The North American Freshwater Migratory Fish Database (NAFMFD): characterizing the migratory life histories of freshwater fishes of Canada, the United States and Mexico. J Biogeogr. 2022;49:1193–203.

    Article 

    Google Scholar
     

  • Wolter C, Buijse AD, Parasiewicz P. Temporal and spatial patterns of fish response to hydromorphological processes. River Res Appl. 2016;32:190–201.

    Article 

    Google Scholar
     

  • Gerking SD. The restricted movement of fish populations. Biol Rev. 1959;34:221–42.

    Article 

    Google Scholar
     

  • Gowan C, Young MK, Fausch KD, Riley SC. Restricted movement in resident stream salmonids: a paradigm lost? Can J Fish Aquat Sci. 1994;51:2626–37.

    Article 

    Google Scholar
     

  • Rodríguez MA. Restricted movement in stream fish: the paradigm is incomplete, not lost. Ecology. 2002;83:1–13.

    Article 

    Google Scholar
     

  • Skalski GT, Gilliam JF. Modeling diffusive spread in a heterogeneous population: a movement study with stream fish. Source Ecol. 2000;81:1685–700.


    Google Scholar
     

  • Radinger J, Wolter C. Patterns and predictors of fish dispersal in rivers. Fish Fish. 2014;15:456–73.

    Article 

    Google Scholar
     

  • Wells WG, Johnson TC, Gebhard AE, Paine RTR, Hix LA, Ferrell HN, et al. March of the sculpin: measuring and predicting short-term movement of banded sculpin Cottus carolinae. Ecol Freshw Fish. 2017;26:280–91.

    Article 

    Google Scholar
     

  • Santee NS, Yancy LE, Steffensmeier ZD, Perkin JS. Testing restricted movement of plains killifish (Fundulus zebrinus). Southwest Nat. 2022. https://doi.org/10.1894/0038-4909-65.3-4.271.

    Article 

    Google Scholar
     

  • Steffensmeier ZD, Wedgeworth M, Yancy L, Santee N, Brewer SK, Perkin JS. Paradigm versus paradox on the prairie: testing competing stream fish movement frameworks using an imperiled Great Plains minnow. Mov Ecol. 2022. https://doi.org/10.1186/s40462-022-00306-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller K. The colonization cycle of freshwater insects. Oecologia. 1982;52:202–7.

    Article 
    PubMed 

    Google Scholar
     

  • Pachepsky E, Lutscher F, Nisbet RM, Lewis MA. Persistence, spread and the drift paradox. Theor Popul Biol. 2005;67:61–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore GA. Notes on the early life history of Notropis girardi. Copeia. 1944;1944:209.

    Article 

    Google Scholar
     

  • Hoagstrom CW, Turner TF. Recruitment ecology of pelagic-broadcast spawning minnows: paradigms from the ocean advance science and conservation of an imperiled freshwater fauna. Fish Fish. 2015;16:282–99.

    Article 

    Google Scholar
     

  • Fausch KD, Torgersen CE, Baxter CV, Li HW. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience. 2002;52:483–98.

    Article 

    Google Scholar
     

  • Platania SP, Altenbach CS. Reproductive strategies and egg types of seven Rio Grande Basin Cyprinids. Copeia. 1998;1998:559.

    Article 

    Google Scholar
     

  • Chase NM, Caldwell CA, Carleton SA, Gould WR, Hobbs JA. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry. Can J Fish Aquat Sci. 2015;72:1575–83.

    Article 

    Google Scholar
     

  • Ruppel DS, Sotola VA, Craig CA, Martin NH, Bonner TH. Assessing functions of movement in a Great Plains endemic fish. Environ Biol Fishes. 2020;103:795–814.

    Article 

    Google Scholar
     

  • Archdeacon TP, Davenport SR, Grant JD, Henry EB. Mass upstream dispersal of pelagic-broadcast spawning Cyprinids in the Rio Grande and Pecos River, New Mexico. West N Am Nat. 2018;78:100–5.

    Article 

    Google Scholar
     

  • Fausch KD, Bestgen KR. Ecology of fishes indigenous to the central and southwestern Great Plains. New York: Springer; 1997. p. 131–66.


    Google Scholar
     

  • Archdeacon TP, Gonzales EJ, Thomas LI, Rudolph AB, Bachus JA. Effects of flow recession regime on stranding of Rio Grande silvery minnow suggests that conservation actions must overcome evolutionary traps. Aquat Conserv. 2022;32:1817–29.

    Article 

    Google Scholar
     

  • Worthington TA, Echelle AA, Perkin JS, Mollenhauer R, Farless N, Dyer JJ, et al. The emblematic minnows of the North American Great Plains: a synthesis of threats and conservation opportunities. Fish Fish. 2018;19:271–307.

    Article 

    Google Scholar
     

  • Walsworth TE, Budy P. An empirically based simulation model to inform flow management for endangered species conservation. Can J Fish Aquat Sci. 2021;78:1770–81.

    Article 

    Google Scholar
     

  • Yackulic CB, Archdeacon TP, Valdez RA, Hobbs M, Porter MD, Lusk J, et al. Quantifying flow and nonflow management impacts on an endangered fish by integrating data, research, and expert opinion. Ecosphere. 2022. https://doi.org/10.1002/ecs2.4240.

    Article 

    Google Scholar
     

  • Dudley RK, Platania SP. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecol Appl. 2007;17:2074–86.

    Article 
    PubMed 

    Google Scholar
     

  • Cowley DE. Strategies for ecological restoration of the Middle Rio Grande in New Mexico and recovery of the endangered Rio Grande silvery minnow. Rev Fish Sci. 2006;14:169–86.

    Article 

    Google Scholar
     

  • Swanson BJ, Meyer GA, Coonrod JE. Historical channel narrowing along the Rio Grande near Albuquerque, New Mexico in response to peak discharge reductions and engineering: magnitude and uncertainty of change from air photo measurements. Earth Surf Process Landf. 2011;36:885–900.

    Article 

    Google Scholar
     

  • Archdeacon TP, Reale JK. No quarter: lack of refuge during flow intermittency results in catastrophic mortality of an imperiled minnow. Freshw Biol. 2020;65:2108–23.

    Article 

    Google Scholar
     

  • Blythe TL, Schmidt JC. Estimating the natural flow regime of rivers with long-standing development: the Northern Branch of the Rio Grande. Water Resour Res. 2018;54:1212–36.

    Article 

    Google Scholar
     

  • Archdeacon TP, Diver-Franssen TA, Bertrand NG, Grant JD. Drought results in recruitment failure of Rio Grande silvery minnow (Hybognathus amarus), an imperiled, pelagic broadcast-spawning minnow. Environ Biol Fishes. 2020;103:1033–44.

    Article 

    Google Scholar
     

  • Alò D, Turner TF. Effects of habitat fragmentation on effective population size in the endangered Rio Grande silvery minnow. Conserv Biol. 2005;19:1138–48.

    Article 

    Google Scholar
     

  • Osborne MJ, Portnoy DS, Fields AT, Bean MG, Hoagstrom CW, Conway KW. Under the radar: genetic assessment of Rio Grande Shiner (Notropis jemezanus) and Speckled Chub (Macrhybopsis aestivalis), two Rio Grande basin endemic cyprinids that have experienced recent range contractions. Conserv Genet. 2021;22:187–204.

    Article 

    Google Scholar
     

  • Osborne MJ, Archdeacon TP, Yackulic CB, Dudley RK, Caeiro-Dias G, Turner TF. Genetic erosion in an endangered desert fish during a megadrought despite long-term supportive breeding. Conserv Biol. 2023. https://doi.org/10.1111/cobi.14154.

    Article 
    PubMed 

    Google Scholar
     

  • Archdeacon TP, Dudley RK, Remshardt WJ, Knight W, Ulibarri M, Gonzales EJ. Hatchery supplementation increases potential spawning stock of Rio Grande silvery minnow after population bottlenecks. Trans Am Fish Soc. 2023;152:187–200.

    Article 

    Google Scholar
     

  • U.S. Fish and Wildlife Service. Rio Grande silvery minnow (Hybognathus amarus) recovery plan, first revision. 2010.

  • Platania SP, Mortensen JG, Farrington MA, Brandenburg WH, Dudley RK. Dispersal of stocked Rio Grande silvery minnow (Hybognathus amarus) in the middle Rio Grande, New Mexico. Southwest Nat. 2020;64:31–42.

    Article 

    Google Scholar
     

  • Patiño-Gomez C, McKinney DC, Maidment DR. Sharing water resources data in the binational Rio Grande/Bravo Basin. J Water Resour Plan Manag. 2007;133:416–26.

    Article 

    Google Scholar
     

  • Richard G, Julien P. Dam impacts and restoration of an alluvial river—Rio Grande, New Mexico. Int J Sedim Res. 2003;18:89–96.


    Google Scholar
     

  • Scurlock D. From the Rio to the Sierra: an environmental history of the Middle Rio Grande Basin. Fort Collins; 1998.

  • Dudley RK, Platania SP, White GC. Rio Grande silvery minnow population monitoring during 2022. Albuquerque; 2022.

  • Archdeacon TP, Remshardt WJ, Knecht TL. Comparison of two methods for implanting Passive Integrated Transponders in Rio Grande silvery minnow. N Am J Fish Manag. 2009;29:346–51.

    Article 

    Google Scholar
     

  • Stout JB, Conner MM, Budy P, Mackinnon PD, McKinstry MC. We ain’t afraid of no ghosts: tracking habitat interactions and movement dynamics of ghost tags under differing flow conditions in a sand-bed river. N Am J Fish Manag. 2019;39:1337–47.

    Article 

    Google Scholar
     

  • Crook DA. Is the home range concept compatible with the movements of two species of lowland river fish? J Anim Ecol. 2004;73:353–66.

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. 2021.

  • Anscombe FJ, Glynn WJ. Distribution of the kurtosis statistic b2 for normal samples. Biometrika. 1983;70:227.


    Google Scholar
     

  • Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017;14:20170213.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horwitz RJ, Keller DH, Overbeck PF, Platania SP, Dudley RK, Carson EW. Age and growth of the Rio Grande silvery minnow, an endangered, short-lived cyprinid of the North American Southwest. Trans Am Fish Soc. 2018;147:265–77.

    Article 

    Google Scholar
     

  • Bestgen KR, Propst DL. Redescription, geographic variation, and taxonomic status of Rio Grande silvery minnow, Hybognathus amarus (Girard, 1856). Copeia. 1996;1996:41.

    Article 

    Google Scholar
     

  • Shaw RG, Mitchell-Olds T. Anova for unbalanced data: an overview. Ecology. 1993;74:1638–45.

    Article 

    Google Scholar
     

  • Archdeacon TP. Reduction in spring flow threatens Rio Grande silvery minnow: Trends in abundance during river intermittency. Trans Am Fish Soc. 2016;145:754–65.

    Article 

    Google Scholar
     

  • Troia MJ, Kaz AL, Niemeyer JC, Giam X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat Ecol Evol. 2019;3:1321–30.

    Article 
    PubMed 

    Google Scholar
     

  • De Fries L, Camana M, Hartz SM, Becker FG. Heterogeneous movement by a small non-migratory stream fish. Environ Biol Fishes. 2022;105:1873–85.

    Article 

    Google Scholar
     

  • Carson EW, Osborne MJ, Turner TF. Relationship of effective size to hatchery supplementation and habitat connectivity in a simulated population of Rio Grande silvery minnow. N Am J Fish Manag. 2020;40:922–38.

    Article 

    Google Scholar
     

  • Bestgen KR, Crockett HJ, Haworth MR, Fitzpatrick RM. Production of nonadhesive eggs by Flathead Chub and implications for downstream transport and conservation. J Fish Wildl Manag. 2016;7:434–43.

    Article 

    Google Scholar
     

  • Anholt BR. Density dependence resolves the stream drift paradox. Ecology. 1995;76:2235–9.

    Article 

    Google Scholar
     

  • Humphries S, Ruxton GD. Is there really a drift paradox? J Anim Ecol. 2002;71:151–4.

    Article 

    Google Scholar
     

  • Archdeacon TP, Remshardt WJ. Observations of hatchery-reared Rio Grande silvery minnow using a fishway. N Am J Fish Manag. 2012;32:648–55.

    Article 

    Google Scholar
     

  • Brown EH. Movement of native and hatchery-reared game fish in a warm-water stream. Trans Am Fish Soc. 1961;90:449–56.

    Article 

    Google Scholar
     

  • Hedden SC, Gido KB, Hedden CK, Hickerson BT, Stewart WT. Movement, not survival, differs between wild and hatchery-reared imperiled desert fishes. N Am J Fish Manag. 2023;43:1310–21.

    Article 

    Google Scholar
     

  • Walters DM, Zuellig RE, Crockett HJ, Bruce JF, Lukacs PM, Fitzpatrick RM. Barriers impede upstream spawning migration of Flathead Chub. Trans Am Fish Soc. 2014;143:17–25.

    Article 

    Google Scholar
     

  • Branco P, Amaral SD, Ferreira MT, Santos JM. Do small barriers affect the movement of freshwater fish by increasing residency? Sci Total Environ. 2017;581–582:486–94.

    Article 
    PubMed 

    Google Scholar
     

  • Teitelbaum CS, Mueller T. Beyond migration: causes and consequences of nomadic animal movements. Trends Ecol Evol. 2019;34:569–81.

    Article 
    PubMed 

    Google Scholar
     

  • Mueller T, Fagan WF, Mueller T, Fagan ÁWF. Search and navigation in dynamic environments: from individual behaviors to population distributions. Oikos. 2008;117:654–64.

    Article 

    Google Scholar
     

  • Leavy TR, Bonner TH. Relationships among swimming ability, current velocity association, and morphology for freshwater lotic fishes. N Am J Fish Manag. 2009;29:72–83.

    Article 

    Google Scholar
     

  • Teitelbaum CS, Altizer S, Hall RJ. Movement rules determine nomadic species’ responses to resource supplementation and degradation. J Anim Ecol. 2020;89:2644–56.

    Article 
    PubMed 

    Google Scholar
     

  • Naman SM, Greene CM, Rice CA, Chamberlin J, Conway-Cranos L, Cordell JR, et al. Stable isotope-based trophic structure of pelagic fish and jellyfish across natural and anthropogenic landscape gradients in a fjord estuary. Ecol Evol. 2016;6:8159–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perkin JS, Gido KB. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries (Bethesda). 2011;36:371–83.

    Article 

    Google Scholar
     

  • Zdasiuk BJ, Fortin M-J, Colm JE, Drake DAR, Mandrak NE. Movement of an imperiled esocid fish in an agricultural drain. Mov Ecol. 2023;11:77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zymonas ND, Propst DL. A re-analysis of data and critique of Medley et al.—“Simulated transport and retention of pelagic fish eggs during an irrigation release in the Pecos River, New Mexico.” J Freshw Ecol. 2009;24:671–9.

    Article 

    Google Scholar
     

  • Medley CN, Shirey PD. Review and reinterpretation of Rio Grande silvery minnow reproductive ecology using egg biology, life history, hydrology, and geomorphology information. Ecohydrology. 2013;6:491–505.

    Article 

    Google Scholar
     

  • Valdez RA, Haggerty GM, Richard K, Klobucar D. Managed spring runoff to improve nursery floodplain habitat for endangered Rio Grande silvery minnow. Ecohydrology. 2019;12:e2134.

    Article 

    Google Scholar
     

  • Cross FB, Moss RE. Historic changes in fish communities and aquatic habitats in plains streams of Kansas. Community and evolutionary ecology of North American stream fishes. 1987; 155–65.



  • Source link