Scientific Papers

Insilco vaccine design of spike and hemagglutinin esterase proteins of bovine coronavirus | Translational Medicine Communications


  • Peel DS. The effect of market forces on bovine respiratory disease. Veterinary Clinics: Food Anim Pract. 2020;36(2):497–508.


    Google Scholar
     

  • Mebus CA, Stair EL, Rhodes MB, Twiehaus MJ. Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent. Amer J Vet Res. 1973;34:145–50.

    PubMed 
    CAS 

    Google Scholar
     

  • Saif LJ. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: an enigma resolved? Cornell Vet. 1990;80:303–11.

    PubMed 
    CAS 

    Google Scholar
     

  • Saif LJ. Coronaviruses of domestic livestock and poultry: interspecies transmission, pathogenesis, and immunity. In: Perlman S, Gallagher T, Snijder EJ, editors. The nidoviruses. Washington, DC: ASM; 2007. pp. 279–96.


    Google Scholar
     

  • Saif LJ. Bovine respiratory coronavirus. Vet Clin North Am Food Anim Pract. 2010;26:349–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulton RW. Bovine respiratory disease research (1983–2009). Anim Health Res Rev. 2009;10:130–9.

    Article 

    Google Scholar
     

  • Fulton RW. Viral diseases of bovine respiratory tract: bovine herpesvirus-1, parainfluenza – 3 virus, bovine respiratory syncytial virus, bovine adenoviruses, bovine coronavirus, and bovine viral diarrhea viruses. In: Anderson DE, Rings DM, editors. Current veterinary therapy-food animal practice. St. Louis, MO: Saunders Elsevier; 2008. pp. 171–91.


    Google Scholar
     

  • Fulton RW, Herd HR, Sorensen NJ, Confer AW, Ritchey JW, Ridpath JF, Burge LJ. Enteric disease in postweaned beef calves associated with bovine coronavirus clade 2. J Veter Diagn Investig. 2015;27:97–101.

    Article 

    Google Scholar
     

  • Cho KO, Hasoksuz M, Nielsen PR, et al. Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection. Arch Virol. 2001;146:2401–19.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brownlie J. Coronaviridae. In: MacLachlan NJ, Dubovi EJ, editors. Fenner’s Veterinary Virology. 5th ed. San Diego, California: Elsevier; 2017. pp. 435–59.


    Google Scholar
     

  • Saif LJ, Alhamo M. Bovine coronavirus infection. In: Coetzer JAW, Thomson GR, Maclachlan NJ, Penrith ML, editors. Infectious diseases of livestock. 3rd ed. Oxford: Oxford University Press; 2018. https://anipedia.org/resources/bovine-coronavirus-infection/1033., United Kingdom.


    Google Scholar
     

  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lai MHKV. Coronaviridae: the viruses and their replication. In: Fields BN, Howley PM, DMK, editors. Fields Virology. Philadelphia: Lippincott – Raven; 2001. pp. 1163–86.


    Google Scholar
     

  • Deregt D, Gifford GA, Ijaz MK, et al. Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: demonstration of in vivo virus-neutralizing activity. J Gen Virol. 1989;70(Pt 4):993–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Compendium of veterinary products. 12th ed. Huron P, MI: North American Compendiums; 2010. p. 1–1848.

  • Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res. 2002;84:101–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol. 2012;157:1411–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, Bai R, Teng JL, Tsang CC, Wang M, et al. Discovery of seven Novel mammalian and avian coronaviruses in the Genus Deltacoronavirus supports Bat coronaviruses as the Gene source of Alphacoronavirus and Betacoronavirus and Avian coronaviruses as the Gene source of Gammacoronavirus and Deltacoronavirus. J Virol. 2012;86:3995–4008.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • ICTV Virus Taxonomy. 2019 Release. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/223/coronaviridae-figures (accessed on 23 March 2021).

  • McDaniel CJ, Cardwell DM, Moeller RB, Gray GC. (2014). Humans and cattle: a review of bovine zoonoses. Vector Borne Zoonotic Dis. (2014);14(1):1-19.https://doi.org/10.1089/vbz.2012.1164

  • Usmani SS et al. In silico tools and databases for designing peptide-based vaccines and drugs. 2018;112:221-63.

  • Ali SA, Almofti YA. and K.A.J.A.i.b. Abd-Elrahman, Immunoinformatics approach for multiepitopes vaccine prediction against glycoprotein B of avian infectious laryngotracheitis virus. 2019. 2019.

  • Li W et al. Peptide vaccine: progress and challenges. 2014;2(3):515-36.

  • Hall T, Biosciences I, Carlsbad CJGBB. BioEdit: Important Softw Mol Biology. 2011;2(1):60–1.


    Google Scholar
     

  • Kumar S et al. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. 2016;33(7):1870-74.

  • Doytchinova IA, D.R.J. .B.b. Flower, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. 2007;8(1):1-7.

  • Gasteiger E et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. 2003;31(13):3784-8.

  • Buchan DW et al. Scalable web services for the PSIPRED Protein Analysis Workbench. 2013;41(W1):W349-W357.

  • Ferrè F, Clote PJB. Disulfide Connectivity Prediction Using Secondary Struct Inform Diresidue Frequencies. 2005;21(10):2336–46.


    Google Scholar
     

  • Altschul SF et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 1997;25(17):3389-402.

  • Marchler-Bauer A et al. CDD: a conserved domain database for interactive domain family analysis. 2007;35(suppl_1):D237-D240.

  • Eddy SRJB. Profile Hidden Markov Models. 1998;14(9):755–63.

    CAS 

    Google Scholar
     

  • El-Gebali S et al. The Pfam protein families database in 2019. 2019;47(D1):D427-D432.

  • Vita R et al. The immune epitope database (IEDB) 3.0. 2015;43(D1):D405-D412.

  • Larsen JEP, Lund O, Nielsen MJIr. Improved Method Predicting Linear B-cell Epitopes. 2006;2(1):1–7.


    Google Scholar
     

  • Emini EA et al. Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. 1985;55(3):836–9.

  • Kolaskar AS. And P.C.J.F.l. Tongaonkar, a semi-empirical method for prediction of antigenic determinants on protein antigens. 1990;276(1–2):172–4.

  • Lundegaard C, Lund O, Nielsen MJB. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. 2008;24(11):1397–1398.

  • Bui H-H et al. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. 2007;8(1):1–6.

  • Dimitrov I, et al. AllerTOP v 2—a Serv silico Prediction Allergens. 2014;20(6):1–6.

    CAS 

    Google Scholar
     

  • Gupta S, et al. silico Approach Predicting Toxic Peptides Proteins. 2013;8(9):e73957.

    CAS 

    Google Scholar
     

  • Kelley LA et al. The Phyre2 web portal for protein modeling, prediction and analysis. 2015;10(6):845–858.

  • Källberg M et al. Template-based protein structure modeling using the RaptorX web server. 2012;7(8):1511–22.

  • Peng J, Xu JJPS, Function, Bioinformatics. RaptorX: Exploiting Struct Inform Protein Alignment Stat Inference. 2011;79(S10):161–71.

    CAS 

    Google Scholar
     

  • Peng J, Xu JJPS, Function, Bioinformatics. A multiple-template approach to protein threading. 2011. 79(6): pp. 1930–9.

  • Chan WM et al. User’s manual for Chimera grid tools, version 1.8. 2003.

  • Yang Z, Bogdan P, Nazarian SJSr. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. 2021;11(1):1–21.

  • Khalid H, U.A.J.J.o.B I, Ashfaq. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. 2020;108:103498.

  • Verma SK, Yadav S. and A.J.A.b.r. Kumar, In silico prediction of B-and T-cell epitope on Lassa virus proteins for peptide based subunit vaccine design. 2015;4.

  • Fridkis-Hareli M, Hoshino Y. Peptide-Based Immunotherapeutics and Vaccines. J Immunol Res. 2018;2018:9.

  • Wang B et al. Peptide-Based Vaccination Therapy for Rheumatic Diseases. 2020;2020.

  • Awadelkareem EA, S.A.J.T.M C, Ali. Vaccine design of coronavirus spike (S) glycoprotein in chicken: immunoinformatics and computational approaches. 2020;5(1):1–16.

  • Yao B et al. Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. 2013;8(4):e62249.

  • Enayatkhani M et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. 2021;39(8):2857–72.

  • Klein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007;41:281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nene V, Svitek N, Toye P et al. Designing bovine T cell vaccines via reverse immunology, Ticks and Tick-borne Diseases, 3;3:188–92, 2012.

  • Sequencing BG, Consortium A, Elsik CG, Tellam RL, Worley andKC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8.

    Article 

    Google Scholar
     

  • Zimin AV, Delcher AL, Florea L et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol, 10, no. 4, article R42, 2009.



  • Source link