Scientific Papers

Comparing anti-tau antibodies under clinical trials and their epitopes on tau pathologies | Molecular Neurodegeneration


  • Yang J, Shen N, Shen J, Yang Y, Li HL. Complicated role of post-translational modification and protease-cleaved fragments of tau in Alzheimer’s Disease and other tauopathies. Mol Neurobiol. 2024;61(7):4712–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, et al. Lecanemab, Aducanumab, and Gantenerumab – binding profiles to different forms of amyloid-Beta might explain Efficacy and Side effects in clinical trials for Alzheimer’s Disease. Neurotherapeutics: J Am Soc Experimental Neurother. 2023;20(1):195–206.

    Article 

    Google Scholar
     

  • Bespalov A, Courade JP, Khiroug L, Terstappen GC, Wang Y. A call for better understanding of target engagement in Tau antibody development. Drug Discov Today. 2022;27(11):103338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imbimbo BP, Balducci C, Ippati S, Watling M. Initial failures of anti-tau antibodies in Alzheimer’s disease are reminiscent of the amyloid-β story. Neural Regeneration Res. 2023;18(1):117–8.

    Article 

    Google Scholar
     

  • Courade JP, Angers R, Mairet-Coello G, Pacico N, Tyson K, Lightwood D, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136(5):729–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barini E, Plotzky G, Mordashova Y, Hoppe J, Rodriguez-Correa E, Julier S, et al. Tau in the brain interstitial fluid is fragmented and seeding-competent. Neurobiol Aging. 2022;109:64–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.

    Article 
    PubMed 

    Google Scholar
     

  • Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547(7662):185–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horie K, Barthélemy NR, Spina S, VandeVrede L, He Y, Paterson RW, et al. CSF tau microtubule-binding region identifies pathological changes in primary tauopathies. Nat Med. 2022;28(12):2547–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Nguyen BA, Mullapudi V, Li Y, Saelices L, Joachimiak LA. Disease-associated patterns of acetylation stabilize tau fibril formation. Structure (London, England: 1993). 2023.

  • Trzeciakiewicz H, Tseng JH, Wander CM, Madden V, Tripathy A, Yuan CX, et al. A dual pathogenic mechanism links tau acetylation to sporadic Tauopathy. Sci Rep. 2017;7:44102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song HL, Kim NY, Park J, Kim MI, Jeon YN, Lee SJ et al. Monoclonal antibody Y01 prevents tauopathy progression induced by lysine 280-acetylated tau in cell and mouse models. J Clin Investig. 2023;133(8).

  • Xia Y, Prokop S, Giasson BI. Don’t Phos over tau: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol Neurodegener. 2021;16(1):37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parra Bravo C, Krukowski K, Barker S, Wang C, Li Y, Fan L, et al. Anti-acetylated-tau immunotherapy is neuroprotective in tauopathy and brain injury. Mol Neurodegeneration. 2024;19(1):1–19.

    Article 

    Google Scholar
     



  • Source link