Scientific Papers

Scalable identification of lineage-specific gene regulatory networks from metacells with NetID | Genome Biology


  • Sagar, Grün D. Deciphering cell fate decision by integrated single-cell sequencing analysis. Annu Rev Biomed Data Sci. 2020;3:1–22.

  • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5: e12776.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali T. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods. 2020;17:147–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chan TE, Stumpf MP, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017;5(251–267): e253.


    Google Scholar
     

  • Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21:1–35.

    Article 

    Google Scholar
     

  • Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019;10:390.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018;15:539–42.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018;174:716-729. e727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjärnberg A, Mahmood O, Jackson CA, Saldi G-A, Cho K, Christiaen LA, Bonneau RA. Optimal tuning of weighted kNN-and diffusion-based methods for denoising single cell genomics data. PLoS Comput Biol. 2021;17: e1008569.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ly L-H, Vingron M. Effect of imputation on gene network reconstruction from single-cell RNA-seq data. Patterns. 2022;3: 100414.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang J, Roeder K, Devlin B. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data. Genome Res. 2021;31(10):1807–18.

  • Breda J, Zavolan M, van Nimwegen E. Bayesian inference of gene expression states from single-cell RNA-seq data. Nat Biotechnol. 2021;39:1008–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, Meir Z, Hoichman M, Lifshitz A, Tanay A. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 2019;20:1–19.

    Article 
    CAS 

    Google Scholar
     

  • Grün D. Revealing dynamics of gene expression variability in cell state space. Nat Methods. 2020;17:45–9.

    Article 
    PubMed 

    Google Scholar
     

  • Rosales-Alvarez RE, Rettkowski J, Herman JS, Dumbović G, Cabezas-Wallscheid N, Grün D. VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells. Genome Biol. 2023;24:1–30.

    Article 

    Google Scholar
     

  • Hie B, Cho H, DeMeo B, Bryson B, Berger B. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst. 2019;8(483–493): e487.


    Google Scholar
     

  • Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe’Er D. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37:451–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A. RNA velocity of single cells. Nature. 2018;560:494–8.

    Article 
    PubMed Central 

    Google Scholar
     

  • Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bahadori MT, Liu Y. An examination of practical Granger causality inference. In: Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia; SIAM; 2013. p. 467–75.

  • Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, Waisman A, Huh JR, Klein AM, Socolovsky M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555:54–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, Greenleaf WJ. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173(1535–1548): e1516.


    Google Scholar
     

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cannoodt R, Saelens W, Deconinck L, Saeys Y. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nat Commun. 2021;12:3942.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pei W, Shang F, Wang X, Fanti A-K, Greco A, Busch K, Klapproth K, Zhang Q, Quedenau C, Sauer S. Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. Cell Stem Cell. 2020;27(383–395): e388.


    Google Scholar
     

  • Qiu C, Cao J, Martin BK, Li T, Welsh IC, Srivatsan S, Huang X, Calderon D, Noble WS, Disteche CM, et al. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat Genet. 2022;54:328–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, Schniering J, Schiller HB. Cell rank for directed single-cell fate mapping. Nat Methods. 2022;19:159–70.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Matsumoto H, Kiryu H, Furusawa C, Ko MS, Ko SB, Gouda N, Hayashi T, Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33:2314–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Specht AT, Li J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics. 2017;33:764–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang S, Pyne S, Pietrzak S, Halberg S, McCalla SG, Siahpirani AF, Sridharan R, Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat Commun. 2023;14:3064.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WW, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood, The Journal of the American Society of Hematology. 2018;131:e1–11.

    CAS 

    Google Scholar
     

  • Kang Y, Kim YW, Yun J, Shin J, Kim A. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus. Biochimica et Biophysica Acta. 2015;1849:282–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stevenson BW, Gorman MA, Koach J, Cheung BB, Marshall GM, Parker MW, Holien JK. A structural view of PA2G4 isoforms with opposing functions in cancer. J Biol Chem. 2020;295:16100–12.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Doré LC, Crispino JD. Transcription factor networks in erythroid cell and megakaryocyte development. Blood, The Journal of the American Society of Hematology. 2011;118:231–9.


    Google Scholar
     

  • Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, Pogson AN, Hein MY, Min KHJ, Wang L. Mapping transcriptomic vector fields of single cells. Cell. 2022;185(690–711): e645.


    Google Scholar
     

  • Collombet S, van Oevelen C, Sardina Ortega JL, Abou-Jaoudé W, Di Stefano B, Thomas-Chollier M, Graf T, Thieffry D. Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci. 2017;114:5792–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG: PU. 1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. 1996.

  • Chen H, Zhang P, Voso MT, Hohaus S, Gonzalez DA, Glass CK, Zhang DE, Tenen DG. Neutrophils and monocytes express high levels of PU. 1 (Spi-1) but not Spi-B. 1995.

  • Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005;25:1215–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mancini E, Sanjuan-Pla A, Luciani L, Moore S, Grover A, Zay A, Rasmussen KD, Luc S, Bilbao D, O’Carroll D, et al. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J. 2012;31:351–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vassen L, Beauchemin H, Lemsaddek W, Krongold J, Trudel M, Moroy T. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression. PLoS One. 2014;9: e96636.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tallack MR, Whitington T, Yuen WS, Wainwright EN, Keys JR, Gardiner BB, Nourbakhsh E, Cloonan N, Grimmond SM, Bailey TL, Perkins AC. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 2010;20:1052–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell. 2005;8:97–108.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet. 2014;30:1–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kassouf MT, Hughes JR, Taylor S, McGowan SJ, Soneji S, Green AL, Vyas P, Porcher C. Genome-wide identification of TAL1’s functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res. 2010;20:1064–83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kurotaki D, Yamamoto M, Nishiyama A, Uno K, Ban T, Ichino M, Sasaki H, Matsunaga S, Yoshinari M, Ryo A. IRF8 inhibits C/EBPα activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat Commun. 2014;5:4978.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khoyratty TE, Udalova IA. Diverse mechanisms of IRF5 action in inflammatory responses. Int J Biochem Cell Biol. 2018;99:38–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Scott CL, Omilusik KD. ZEBs: novel players in immune cell development and function. Trends Immunol. 2019;40:431–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen Y, Hong H, Sangwung P, Lapping S, Nayak L, Zhang L, Jain MK, Liao X. Kruppel-like factor 4 regulates neutrophil activation. Blood Adv. 2017;1:662–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015;163:1663–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bornstein C, Winter D, Barnett-Itzhaki Z, David E, Kadri S, Garber M, Amit I. A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States. Mol Cell. 2014;56:749–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Timchenko N, Wilson D, Taylor L, Abdelsayed S, Wilde M, Sawadogo M, Darlington G. Autoregulation of the human C/EBP alpha gene by stimulation of upstream stimulatory factor binding. Mol Cell Biol. 1995;15:1192–202.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T, Donato N, Zhang Y, Martinez RV, Holyoake TL. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBPα and is involved in its proliferation and colony formation–inhibitory effects in p210BCR/ABL-expressing cellseffects of Gfi-1 in CML cells. Can Res. 2010;70:7949–59.

    Article 
    CAS 

    Google Scholar
     

  • Loke J, Chin PS, Keane P, Pickin A, Assi SA, Ptasinska A, Imperato MR, Cockerill PN, Bonifer C. C/EBPα overrides epigenetic reprogramming by oncogenic transcription factors in acute myeloid leukemia. Blood Adv. 2018;2:271–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Park S-M, Kang T-I, So J-S. Roles of XBP1s in transcriptional regulation of target genes. Biomedicines. 2021;9: 791.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Holland CH, Tanevski J, Perales-Paton J, Gleixner J, Kumar MP, Mereu E, Joughin BA, Stegle O, Lauffenburger DA, Heyn H, et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 2020;21:36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Teschendorff AE, Wang N. Improved detection of tumor suppressor events in single-cell RNA-Seq data. NPJ Genom Med. 2020;5:43.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Moerman T, Aibar Santos S, Bravo González-Blas C, Simm J, Moreau Y, Aerts J, Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2019;35:2159–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Breiman L. Random forests. Machine learning. 2001;45:5–32.

    Article 

    Google Scholar
     

  • Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.

    Article 

    Google Scholar
     

  • Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Corrigendum: benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2021;31:745.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu ZP, Wu C, Miao H, Wu H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford). 2015;2015:bav095.

    Article 
    PubMed 

    Google Scholar
     

  • Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de Souza N. The ENCODE project. Nat Methods. 2012;9:1046.

    Article 
    PubMed 

    Google Scholar
     

  • Zou Z, Ohta T, Miura F, Oki S. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res. 2022;50(W1):W175–82.

  • Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma’ayan A. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database (Oxford). 2013;2013:bat045.

    Article 
    PubMed 

    Google Scholar
     

  • Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C, Schirge S, Burtscher I, Böttcher A, Theis FJ. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development. 2019;146:dev173849.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006;74: 016110.

    Article 

    Google Scholar
     

  • Tusi BK, Wolock SL, Weinreb C, Hwang Y, et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Dataset. Available from Gene Expression Omnibus under accession: GSE89754 (2018). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89754.

  • Buenrostro JD, Corces MR, Lareau CA, Wu B, et al. Single-cell epigenomics maps the continuous regulatory landscape of human hematopoietic differentiation. Dataset. Available from Gene Expression Omnibus under accession: GSE96772 (2018). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96772.

  • Setty, M et al. Profiling of CD34+ cells from human bone marrow to understand hematopoiesis. Dataset. Available from: https://explore.data.humancellatlas.org/projects/091cf39b-01bc-42e5-9437-f419a66c8a45 (2021).

  • Pei W, Shang F, Wang X, Fanti AK, et al. Resolving fate and transcriptome of hematopoietic stem cell clones [LT_ST_HSC]. Dataset. Available from Gene Expression Omnibus under accession: GSE152555 (2020). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152555.

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, et al. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells. Dataset. Available from Gene Expression Omnibus under accession: GSE65525 (2015). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65525.

  • Qiu C, et al. Trajectories Of Mouse Embryogenesis (TOME). Dataset. Available from: http://tome.gs.washington.edu.

  • Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, et al. Comprehensive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Dataset. Available from Gene Expression Omnibus under accession: GSE132188 (2019). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132188.

  • Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, et al. A single cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Dataset. Available from Gene Expression Omnibus under accession: GSE107727 (2018). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107727.

  • Wang W, Wang Y, Lyu R, Grün D. Scalable identification of lineage-specific gene regulatory networks from metacells with NetID. Source Code on Github 2024. https://github.com/WWXkenmo/NetID_package.

  • Wang W, Wang Y, Lyu R, Grün D. Scalable identification of lineage-specific gene regulatory networks from metacells with NetID. Zenodo. 2024. https://doi.org/10.5281/zenodo.13858162.

    Article 

    Google Scholar
     



  • Source link