Scientific Papers

Research progress of ankyrin repeat domain 1 protein: an updated review | Cellular & Molecular Biology Letters


  • Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci. 2011;48(5–6):269–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling SSM, Chen YT, Wang J, Richards AM, Liew OW. Ankyrin repeat domain 1 protein: a functionally pleiotropic protein with cardiac biomarker potential. Int J Mol Sci. 2017;18(7):1362. https://doi.org/10.3390/ijms18071362.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu W, Burns DK, Swerlick RA, Presky DH. Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J Biol Chem. 1995;270(17):10236–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, et al. A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem. 1997;272(36):22800–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development. 1999;126(19):4223–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ihara Y, Suzuki YJ, Kitta K, Jones LR, Ikeda T. Modulation of gene expression in transgenic mouse hearts overexpressing calsequestrin. Cell Calcium. 2002;32(1):21–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, et al. Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PLoS ONE. 2012;7(4): e35743.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin P, Tong C. LncRNA RGMB-AS1 up-regulates ANKRD1 through competitively sponging miR-3614-5p to promote OSA cell proliferation and invasion. Arch Med Res. 2022;53(2):131–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol. 1997;139(5):1231–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, et al. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: a potential role in eczema herpeticum. J Allergy Clin Immunol. 2018;141(6):2085-93 e1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, et al. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension. 2000;36(1):48–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jimenez AP, Traum A, Boettger T, Hackstein H, Richter AM, Dammann RH. The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth. Oncotarget. 2017;8(51):88437–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, et al. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 2019;10(3):207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Zhong D, Wang X, Luo F, Zheng X, Feng T, et al. Pan-cancer integrated analysis of ANKRD1 expression, prognostic value, and potential implications in cancer. Sci Rep. 2024;14(1):5268.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Srivastava RK, Elmets CA, Afaq F, Athar M. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein. Biochem Biophys Res Commun. 2013;438(4):607–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LF, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63(3):679–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takaguri A, Kubo T, Mori M, Satoh K. The protective role of YAP1 on ER stress-induced cell death in vascular smooth muscle cells. Eur J Pharmacol. 2017;815:470–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie R, Yuan S, Hu G, Zhan J, Jin K, Tang Y, et al. Nuclear AGO2 promotes myocardial remodeling by activating ANKRD1 transcription in failing hearts. Mol Ther. 2024;32(5):1578–1594. https://doi.org/10.1016/j.ymthe.2024.03.018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanai H, Tanaka T, Aihara Y, Takeda S, Kawabata M, Miyazono K, et al. Transforming growth factor-beta/smads signaling induces transcription of the cell type-restricted ankyrin repeat protein CARP gene through CAGA motif in vascular smooth muscle cells. Circ Res. 2001;88(1):30–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, et al. Increased ANKRD1 levels in early senescence mediated by RBMS1-elicited ANKRD1 mRNA stabilization. Mol Cell Biol. 2024;44(5):194–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lun AS, Chen J, Lange S. Probing muscle ankyrin-repeat protein (MARP) structure and function. Anat Rec (Hoboken). 2014;297(9):1615–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yura Y, Amano M, Takefuji M, Bando T, Suzuki K, Kato K, et al. Focused proteomics revealed a novel Rho-kinase signaling pathway in the heart. Cell Struct Funct. 2016;41(2):105–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samaras SE, Chen B, Koch SR, Sawyer DB, Lim CC, Davidson JM. 26S proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells. Biochem Biophys Res Commun. 2012;425(4):830–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badi I, Cinquetti R, Frascoli M, Parolini C, Chiesa G, Taramelli R, et al. Intracellular ANKRD1 protein levels are regulated by 26S proteasome-mediated degradation. FEBS Lett. 2009;583(15):2486–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laure L, Daniele N, Suel L, Marchand S, Aubert S, Bourg N, et al. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-kappaB pathway in skeletal muscle. FEBS J. 2010;277(20):4322–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of Titin filament-based stress response molecules. J Mol Biol. 2003;333(5):951–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samaras SE, Shi Y, Davidson JM. CARP: fishing for novel mechanisms of neovascularization. J Investig Dermatol Symp Proc. 2006;11(1):124–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong L, Chiusa M, Cadar AG, Lin A, Samaras S, Davidson JM, et al. Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc Res. 2015;106(2):261–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange S, Gehmlich K, Lun AS, Blondelle J, Hooper C, Dalton ND, et al. MLP and CARP are linked to chronic PKCalpha signalling in dilated cardiomyopathy. Nat Commun. 2016;7:12120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development. 1997;124(4):793–804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol. 2001;153(2):413–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Yang T, Jiang Q, Sun J, Gu L, Wang S, et al. Integrated transcriptomic and proteomic analysis reveals potential targets for heart regeneration. Biomol Biomed. 2023;23(1):101–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boskovic S, Marín Juez R, Stamenkovic N, Radojkovic D, Stainier DYR, Kojic S. The stress responsive gene ankrd1a is dynamically regulated during skeletal muscle development and upregulated following cardiac injury in border zone cardiomyocytes in adult zebrafish. Gene. 2021:792:145725. https://doi.org/10.1016/j.gene.2021.145725.

    Article 
    PubMed 

    Google Scholar
     

  • Zolk O, Frohme M, Maurer A, Kluxen FW, Hentsch B, Zubakov D, et al. Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem Biophys Res Commun. 2002;293(5):1377–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aihara Y, Kurabayashi M, Tanaka T, Takeda SI, Tomaru K, Sekiguchi KI, et al. Doxorubicin represses CARP gene transcription through the generation of oxidative stress in neonatal rat cardiac myocytes: possible role of serine/threonine kinase-dependent pathways. J Mol Cell Cardiol. 2000;32(8):1401–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda T, Sepulveda J, Chen HH, Stewart AF. Alpha(1)-adrenergic activation of the cardiac ankyrin repeat protein gene in cardiac myocytes. Gene. 2002;297(1–2):1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zolk O, Marx M, Jackel E, El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation induces cardiac ankyrin repeat protein expression: involvement of protein kinase A and calmodulin-dependent kinase. Cardiovasc Res. 2003;59(3):563–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Shen L, Cao S, Li X, Xuan W, Zhang J, et al. Cytosolic CARP promotes angiotensin II- or pressure overload-induced cardiomyocyte hypertrophy through calcineurin accumulation. PLoS ONE. 2014;9(8): e104040.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 2015;11(8): e1005465.

    Article 
    PubMed Central 

    Google Scholar
     

  • Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bang ML, Gu Y, Dalton ND, Peterson KL, Chien KR, Chen J. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS ONE. 2014;9(4): e93638.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piroddi N, Pesce P, Scellini B, Manzini S, Ganzetti GS, Badi I, et al. Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovasc Res. 2020;116(8):1458–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arimura T, Bos JM, Sato A, Kubo T, Okamoto H, Nishi H, et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(4):334–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crocini C, Arimura T, Reischmann S, Eder A, Braren I, Hansen A, et al. Impact of ANKRD1 mutations associated with hypertrophic cardiomyopathy on contraction parameters of engineered heart tissue. Basic Res Cardiol. 2013;108(3):349.

    Article 
    PubMed 

    Google Scholar
     

  • Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, et al. Reassessment of mendelian gene pathogenicity using 7855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203.

    Article 
    PubMed 

    Google Scholar
     

  • Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 2017;38(46):3461–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Xu J, Li Y, Jia C, Ma X, Zhang L, et al. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-beta signaling pathways. PLoS ONE. 2012;7(12): e50436.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng H, Du Z, Lu W, Wang Q, Sun X, Jiang Y, et al. Baoyuan decoction (BYD) attenuates cardiac hypertrophy through ANKRD1-ERK/GATA4 pathway in heart failure after acute myocardial infarction. Phytomedicine. 2021;89: 153617.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogomolovas J, Brohm K, Celutkiene J, Balciunaite G, Bironaite D, Bukelskiene V, et al. Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression. Biomed Res Int. 2015;2015: 273936.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinkunaite I, Simoliunas E, Alksne M, Bartkute G, Labeit S, Bukelskiene V, et al. Genetic ablation of Ankrd1 mitigates cardiac damage during experimental autoimmune myocarditis in mice. Biomolecules. 2022;12(12):1898. https://doi.org/10.3390/biom12121898.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol. 2009;54(4):325–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duboscq-Bidot L, Charron P, Ruppert V, Fauchier L, Richter A, Tavazzi L, et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur Heart J. 2009;30(17):2128–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Xia Y, Wu Y, Huang S, Teng Y, Liu X, et al. Ankyrin repeat domain 1: a novel gene for cardiac septal defects. J Gene Med. 2019;21(4): e3070.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cinquetti R, Badi I, Campione M, Bortoletto E, Chiesa G, Parolini C, et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum Mutat. 2008;29(4):468–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol. 2020;29: 101394.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bihlmeyer NA, Brody JA, Smith AV, Warren HR, Lin H, Isaacs A, et al. ExomeChip-wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ Genom Precis Med. 2018;11(1): e001758.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Tian C, Huang S, Wang Y, Qiu J, Ning F, et al. Potential biomarker of acute anthracycline-induced cardiotoxicity among children with acute lymphoblastic leukemia: cardiac adriamycin-responsive protein. J Cardiovasc Pharmacol. 2023;82(6):489–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minotti G, Salvatorelli E, Menna P. Anthracyclines and cardiotoxicity: is CARP a forgotten biomarker? J Cardiovasc Pharmacol. 2023;82(6):443–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Meng H, Wang Q, Shao M, Lu W, Chen X, et al. Baoyuan decoction ameliorates apoptosis via AT1-CARP signaling pathway in H9C2 cells and heart failure post-acute myocardial infarction rats. J Ethnopharmacol. 2020;252: 112536.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen L, Chen C, Wei X, Li X, Luo G, Zhang J, et al. Overexpression of ankyrin repeat domain 1 enhances cardiomyocyte apoptosis by promoting p53 activation and mitochondrial dysfunction in rodents. Clin Sci. 2015;128(10):665–78.

    Article 
    CAS 

    Google Scholar
     

  • Han XJ, Chae JK, Lee MJ, You KR, Lee BH, Kim DG. Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells. J Biol Chem. 2005;280(24):23122–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang N, Ye F, Zhu W, Hu D, Xiao C, Nan J, et al. Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression. Biochim Biophys Acta. 2016;1863(12):3040–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagyova E, Radvanszky J, Hyblova M, Simovicova V, Goncalvesova E, Asselbergs FW, et al. Targeted next-generation sequencing in Slovak cardiomyopathy patients. Bratisl Lek Listy. 2019;120(1):46–51.

    CAS 
    PubMed 

    Google Scholar
     

  • de Waard V, van Achterberg TA, Beauchamp NJ, Pannekoek H, de Vries CJ. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions: activin induces CARP in smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23(1):64–8.

    Article 
    PubMed 

    Google Scholar
     

  • Liu XH, Bauman WA, Cardozo C. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-kappaB signaling activity. Biochem Biophys Res Commun. 2015;464(1):208–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou N, Wen Y, Yuan X, Xu H, Wang X, Li F, et al. Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Exp Mol Pathol. 2017;103(3):267–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrer I, Rosello-Lleti E, Rivera M, Molina-Navarro MM, Tarazon E, Ortega A, et al. RNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failure. Lab Invest. 2014;94(6):645–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee MJ, Kwak YK, You KR, Lee BH, Kim DG. Involvement of GADD153 and cardiac ankyrin repeat protein in cardiac ischemia-reperfusion injury. Exp Mol Med. 2009;41(4):243–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Duijvenboden K, de Bakker DEM, Man JCK, Janssen R, Gunthel M, Hill MC, et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation. 2019;140(10):864–79.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Z, Lu D, Yuan J, Wang L, Wang J, Lei Z, et al. Storax attenuates cardiac fibrosis following acute myocardial infarction in rats via suppression of AT1R-Ankrd1-P53 signaling pathway. Int J Mol Sci. 2022;23(21):13161. https://doi.org/10.3390/ijms232113161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witt SH, Labeit D, Granzier H, Labeit S, Witt CC. Dimerization of the cardiac ankyrin protein CARP: implications for MARP Titin-based signaling. J Muscle Res Cell Motil. 2005;26(6–8):401–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed JS, Boriek AM. Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-kappaB signaling pathway in smooth muscle cells. FASEB J. 2012;26(2):757–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei YJ, Cui CJ, Huang YX, Zhang XL, Zhang H, Hu SS. Upregulated expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right ventricular cardiomyopathy. Eur J Heart Fail. 2009;11(6):559–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet. 2012;21(9):2039–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huby AC, Mendsaikhan U, Takagi K, Martherus R, Wansapura J, Gong N, et al. Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J Am Coll Cardiol. 2014;64(25):2765–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakada C, Tsukamoto Y, Oka A, Nonaka I, Takeda S, Sato K, et al. Cardiac-restricted ankyrin-repeated protein is differentially induced in duchenne and congenital muscular dystrophy. Lab Invest. 2003;83(5):711–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu P, Werner JU, Milerski S, Hamp CM, Kuzenko T, Jahnert M, et al. Diet-induced obesity affects muscle regeneration after murine blunt muscle trauma—a broad spectrum analysis. Front Physiol. 2018;9:674.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma G, Wang H, Gu X, Li W, Zhang X, Cui L, et al. CARP, a myostatin-downregulated gene in CFM cells, is a novel essential positive regulator of myogenesis. Int J Biol Sci. 2014;10(3):309–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL. Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol. 2004;286(2):C355–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Pijl RJ, van den Berg M, van de Locht M, Shen S, Bogaards SJP, Conijn S, et al. Muscle ankyrin repeat protein 1 (MARP1) locks Titin to the sarcomeric thin filament and is a passive force regulator. J Gen Physiol. 2021;153(7):e202112925. https://doi.org/10.1085/jgp.202112925.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou T, Fleming JR, Lange S, Hessel AL, Bogomolovas J, Stronczek C, et al. Molecular characterisation of Titin N2A and its binding of CARP reveals a Titin/Actin cross-linking mechanism. J Mol Biol. 2021;433(9): 166901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barash IA, Bang ML, Mathew L, Greaser ML, Chen J, Lieber RL. Structural and regulatory roles of muscle ankyrin repeat protein family in skeletal muscle. Am J Physiol Cell Physiol. 2007;293(1):C218–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishikawa K, Lindstedt SL, Hessel A, Mishra D. N2A Titin: signaling hub and mechanical switch in skeletal muscle. Int J Mol Sci. 2020;21(11):3974. https://doi.org/10.3390/ijms21113974.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu CL, Kandarian SC, Jackman RW. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS ONE. 2011;6(1): e16171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 2008;27(2):350–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Ruggiero CL, Bauman WA, Cardozo C. Ankrd1 is a transcriptional repressor for the androgen receptor that is downregulated by testosterone. Biochem Biophys Res Commun. 2013;437(3):355–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung AS, de Rooy C, Levinger I, Rana K, Clarke MV, How JM, et al. Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. J Steroid Biochem Mol Biol. 2017;174:56–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis-Owen SAG, Thompson A, Kemp PR, Polkey MI, Cookson W, Moffatt MF, et al. COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci Rep. 2018;8(1):12165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer SR, Hsia RC, Folker ES, Lovering RM. Age-dependent changes in nuclear-cytoplasmic signaling in skeletal muscle. Exp Gerontol. 2021;150: 111338.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin W, Pan J, Bauman WA, Cardozo CP. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy. BMC Genom. 2010;11:596.

    Article 

    Google Scholar
     

  • Nakamura K, Nakada C, Takeuchi K, Osaki M, Shomori K, Kato S, et al. Altered expression of cardiac ankyrin repeat protein and its homologue, ankyrin repeat protein with PEST and proline-rich region, in atrophic muscles in amyotrophic lateral sclerosis. Pathobiology. 2002;70(4):197–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakada C, Oka A, Nonaka I, Sato K, Mori S, Ito H, et al. Cardiac ankyrin repeat protein is preferentially induced in atrophic myofibers of congenital myopathy and spinal muscular atrophy. Pathol Int. 2003;53(10):653–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo K, Razak Z, Rao P, Yu Z, Adachi H, Katsuno M, et al. Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy. PLoS ONE. 2010;5(9): e12922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvo AC, Manzano R, Atencia-Cibreiro G, Olivan S, Munoz MJ, Zaragoza P, et al. Genetic biomarkers for ALS disease in transgenic SOD1 (G93A) mice. PLoS ONE. 2012;7(3): e32632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casey WM, Brodie T, Yoon L, Ni H, Jordan HL, Cariello NF. Correlation analysis of gene expression and clinical chemistry to identify biomarkers of skeletal myopathy in mice treated with PPAR agonist GW610742X. Biomarkers. 2008;13(4):364–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scurr LL, Guminski AD, Chiew YE, Balleine RL, Sharma R, Lei Y, et al. Ankyrin repeat domain 1, ANKRD1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. Clin Cancer Res. 2008;14(21):6924–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene. 2015;34(4):485–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi A, Seike M, Chiba M, Takahashi S, Nakamichi S, Matsumoto M, et al. Ankyrin repeat domain 1 overexpression is associated with common resistance to afatinib and osimertinib in EGFR-mutant lung cancer. Sci Rep. 2018;8(1):14896.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S, et al. Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res. 2007;67(1):75–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, et al. Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget. 2016;7(2):1741–53.

    Article 
    PubMed 

    Google Scholar
     

  • Singh D, Deshmukh RK, Das A. SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell Signal. 2021;87: 110151.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Bai Y, Patel C, Geng F. Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem Biophys Res Commun. 2019;520(2):263–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzeo L, Ghosh S, Di Cicco E, Isma J, Tavernari D, Samarkina A, et al. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation. Nat Commun. 2024;15(1):1038.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Reitmaier B, Regenbogen J, Slowey RM, Opalenik SR, Wolf E, et al. CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue. Am J Pathol. 2005;166(1):303–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samaras SE, Almodovar-Garcia K, Wu N, Yu F, Davidson JM. Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. Am J Pathol. 2015;185(1):96–109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021;10(9):2338. https://doi.org/10.3390/cells10092338.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boengler K, Pipp F, Fernandez B, Ziegelhoeffer T, Schaper W, Deindl E. Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (carp). Cardiovasc Res. 2003;59(3):573–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P, Rao G. VEGF signaling: role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 2024;1879(2):189079. https://doi.org/10.1016/j.bbcan.2024.189079.

    Article 
    PubMed 

    Google Scholar
     

  • Lee E, Ko JY, Kim J, Park JW, Lee S, Im GI. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater Sci. 2019;7(11):4588–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9(8):1026–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022;29(8):1161–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almodovar-Garcia K, Kwon M, Samaras SE, Davidson JM. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site. Mol Cell Biol. 2014;34(8):1500–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh AK, Murphy SB, Kishore R, Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. PLoS ONE. 2013;8(5): e63825.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui Y, Li J, Lu Q, Feng Y, Wang M, He W, et al. Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J Biol Chem. 2018;293(42):16364–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang T, He X, Caldwell L, Goru SK, Ulloa Severino L, Tolosa MF, et al. NUAK1 promotes organ fibrosis via YAP and TGF-beta/SMAD signaling. Sci Transl Med. 2022;14(637):eaaz4028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi X, Wu P, Fan Y, Gong Y, Liu J, Xiong J, et al. Identification of candidate genes simultaneously shared by adipogenesis and osteoblastogenesis from human mesenchymal stem cells. Folia Histochem Cytobiol. 2022;60(2):179–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis. 2023;1869(5): 166693.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng CH, Chen LR, Chen KH. Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. 2022;23(3):1376. https://doi.org/10.3390/ijms23031376.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam FJ, MacGillavry HD, Armstrong NJ, de Gunst MC, Zhang Y, van Kesteren RE, et al. Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci. 2007;25(12):3629–37.

    Article 
    PubMed 

    Google Scholar
     

  • Obara Y, Nagasawa R, Nemoto W, Pellegrino MJ, Takahashi M, Habecker BA, et al. ERK5 induces ankrd1 for catecholamine biosynthesis and homeostasis in adrenal medullary cells. Cell Signal. 2016;28(3):177–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34–46.

    Article 
    PubMed 

    Google Scholar
     

  • Pan YW, Zou J, Wang W, Sakagami H, Garelick MG, Abel G, et al. Inducible and conditional deletion of extracellular signal-regulated kinase 5 disrupts adult hippocampal neurogenesis. J Biol Chem. 2012;287(28):23306–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: neurodegeneration or neuroprotection? Age Res Rev. 2021;68: 101343.

    Article 
    CAS 

    Google Scholar
     

  • Jabeen A, Ahmad N, Raza K. Global gene expression and docking profiling of COVID-19 infection. Front Genet. 2022;13: 870836.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaczkowski B, Rossing M, Andersen DK, Dreher A, Morevati M, Visser MA, et al. Integrative analyses reveal novel strategies in HPV11,-16 and -45 early infection. Sci Rep. 2012;2:515.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papic N, Maxwell CI, Delker DA, Liu S, Heale BS, Hagedorn CH. RNA-sequencing analysis of 5’ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses. 2012;4(4):581–612.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Than TT, Tran GV, Son K, Park EM, Kim S, Lim YS, et al. Ankyrin repeat domain 1 is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry. Sci Rep. 2016;6:20819.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jelicic K, Cimbro R, Nawaz F, da Huang W, Zheng X, Yang J, et al. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-beta1 production and FcRL4 expression. Nat Immunol. 2013;14(12):1256–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bin L, Edwards MG, Heiser R, Streib JE, Richers B, Hall CF, et al. Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allerg Clin Immunol. 2014;134(4):848–55.

    Article 
    CAS 

    Google Scholar
     

  • Matsuura K, Uesugi N, Hijiya N, Uchida T, Moriyama M. Upregulated expression of cardiac ankyrin-repeated protein in renal podocytes is associated with proteinuria severity in lupus nephritis. Hum Pathol. 2007;38(3):410–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Wu Y, Zhou K, Huang M, Sun Y, Kang J, et al. Ferroptosis in calcium oxalate kidney stone formation and the possible regulatory mechanism of ANKRD1. Biochim Biophys Acta Mol Cell Res. 2023;1870(5): 119452.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, et al. New gene markers of exosomal regulation are involved in porcine granulosa cell adhesion, migration, and proliferation. Int J Mol Sci. 2023;24(14):11873. https://doi.org/10.3390/ijms241411873.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nivet al, Vigneault C, Blondin P, Sirard MA. Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction. 2013;145(6):555–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojic S, Nestorovic A, Rakicevic L, Belgrano A, Stankovic M, Divac A, et al. A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein. Arch Biochem Biophys. 2010;502(1):60–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishiguro N, Motoi T, Araki N, Ito H, Moriyama M, Yoshida H. Expression of cardiac ankyrin repeat protein, CARP, in malignant tumors: diagnostic use of CARP protein immunostaining in rhabdomyosarcoma. Hum Pathol. 2008;39(11):1673–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link