Scientific Papers

Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response | BMC Genomic Data


  • Singh BP. Biofuel crops: production, physiology and genetics. Choice Rev Online. 2014;51:51–5014.


    Google Scholar
     

  • Günç Ergönül P, Aksoylu Özbek Z. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. J Food Meas Charact. 2018;12:2313–23.

    Article 

    Google Scholar
     

  • Yali W. Polyploidy and its importance in modern plant breeding improvement. Int J Agric Biosci. 2022;11(1):53–8.


    Google Scholar
     

  • Jehangir S, Khan SM, Ahmad Z, Ejaz U, Ul Ain Q, Lho LH, et al. Distribution of the Cannabis sativa L. in the Western Himalayas: a tale of the ecological factors behind its continuous invasiveness. Glob Ecol Conserv. 2024;49:e02779.


    Google Scholar
     

  • Praveen A, Dubey S, Singh S, Sharma VK. Abiotic stress tolerance in plants: a fascinating action of defense mechanisms. 3 Biotech. 2023;13:102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasul I, Nadeem H, Siddique MH, Atif RM, Ali MA, Umer A, et al. Plants sensory-response mechanisms for salinity and heat stress. J Anim Plant Sci. 2017;27:490–502.

    CAS 

    Google Scholar
     

  • Han H, Wang C, Yang X, Wang L, Ye J, Xu F, et al. Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta. 2023;258:13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu H, Tang X, Zhang N, Li S, Si H. Role of bZIP transcription factors in Plant Salt stress. Int J Mol Sci. 2023;24:7893.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family — an update. Curr Opin Plant Biol. 2018;45:36–49.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Zhao Y, Chen Y, Gao M, Wang Y. The Association between BZIP Transcription Factors and Flower Development in Litsea cubeba. Int J Mol Sci. 2023;24:16646.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo Z, Dzinyela R, Yang L, Hwarari D. bZIP transcription factors: structure, modification, Abiotic Stress Responses and application in Plant Improvement. Plants. 2024;13:2058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye F, Zhu X, Wu S, Du Y, Pan X, Wu Y, et al. Conserved and divergent evolution of the bZIP transcription factor in five diploid Gossypium species. Planta. 2023;257:26.

    Article 
    CAS 

    Google Scholar
     

  • An J, Yao J, Xu R, You C, Wang X, Hao Y. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant Cell Environ. 2018;41:2678–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thalor SK, Berberich T, Lee SS, Yang SH, Zhu X, Imai R, et al. Deregulation of sucrose-controlled translation of a bZIP-Type transcription factor results in sucrose Accumulation in leaves. PLoS ONE. 2012;7:e33111.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sjahril R, Anshori MF, Riadi M, Tambung A, Santosa E, Limbongan Y, Pasanda AA, Arifin A, Novitasari, Khatimah K, Prasojo IS. Ramlan and Syahril W. determination of polyploidy induction capacity of Toraja Talas Bite Taro (Colocasia esculenta) with colchicine mutagen. Int J Agric Biosci. 2024;13(3):269–75.


    Google Scholar
     

  • Tao R, Liu Y, Chen S, Shityakov S. Meta-analysis of the effects of overexpressed bZIP transcription factors in plants under Drought stress. Plants. 2024;13:337.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lai H, Wang M, Yan L, Feng C, Tian Y, Tian X, et al. Genome-wide identification of bZIP transcription factors in Cymbidium ensifolium and analysis of their expression under low-temperature stress. Plants. 2024;13:219.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chaudhry UF, Khalid MN, Aziz S, Amjad I, Khalid A, Noor H, Sajid HB. Genetic studies in different F2 segregating population for yield and fiber quality traits in cotton (Gossypium hirsutum L). Int J Agric Biosci. 2022;11(1):59–69.


    Google Scholar
     

  • He Q, Cai H, Bai M, Zhang M, Chen F, Huang Y, et al. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. Int J Mol Sci. 2020;21:4701.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • An P, Li X, Liu T, Shui Z, Chen M, Gao X, et al. The identification of Broomcorn Millet bZIP transcription factors, which regulate growth and development to enhance stress tolerance and seed germination. Int J Mol Sci. 2022;23:6448.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, et al. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol. 2009;69:107–19.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong L, Wu Y, Zhang J, Deng X, Wang T. Transcriptome analysis revealed hormone pathways and bZIP genes responsive to decapitation in sunflower. Genes (Basel). 2022;13:1737.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghimire S, Hasan MM, Khan A, Fang X-W. Unravelling the SUMOylation of bZIP members and its role in abscisic acid signaling in Arabidopsis. Plant Growth Regul. 2024. https://doi.org/10.1007/s10725-024-01163-9.

    Article 

    Google Scholar
     

  • Joo H, Baek W, Lim CW, Lee SC. Post-translational modifications of bZIP transcription factors in Abscisic Acid Signaling and Drought responses. Curr Genomics. 2021;22:4–15.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ji C, Mao X, Hao J, Wang X, Xue J, Cui H, et al. Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Int J Mol Sci. 2018;19:2800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon S, Kang NK, Koh HG, Shin S, Lee B, Jeong B, et al. Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol Bioeng. 2018;115:331–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang Y, Kong Q, Tee WT, Li Y, Low PM, Patra B, et al. Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1. Plant Physiol. 2023;192:2628–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang X, Zhou Y, Shi X, Wen J, Sun Y, Chen S, et al. PfbZIP85 transcription factor mediates ω-3 fatty acid-enriched oil biosynthesis by Down-regulating PfLPAT1B gene expression in plant tissues. Int J Mol Sci. 2024;25:4375.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Weiste C, Pedrotti L, Selvanayagam J, Muralidhara P, Fröschel C, Novák O, et al. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLOS Genet. 2017;13:e1006607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, Li T, Klosterman SJ, Tian C, Wang Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium Dahliae. New Phytol. 2020;226:1461–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han P, Yin T, Xi D, Yang X, Zhang M, Zhu L, et al. Genome-wide identification of the Sweet Orange bZIP Gene Family and Analysis of their expression in response to infection by Penicillium Digitatum. Horticulturae. 2023;9:393.

    Article 
    CAS 

    Google Scholar
     

  • He L, Wu Z, Wang X, Zhao C, Cheng D, Du C, et al. A novel maize F-bZIP member, ZmbZIP76, functions as a positive regulator in ABA-mediated abiotic stress tolerance by binding to ACGT-containing elements. Plant Sci. 2024;341:111952.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Yu L, Yung K-F, Leung DY, Sun F, Lim BL. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol Biofuels. 2012;5:19.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–7.

    Article 
    PubMed 

    Google Scholar
     

  • Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39–49.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Azeem F, Tahir H, Ijaz U, Shaheen T. A genome-wide comparative analysis of bZIP transcription factors in G. Arboreum and G. Raimondii (diploid ancestors of present-day cotton). Physiol Mol Biol Plants. 2020;26:433–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant. 2020;13:1194–202.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A. Identifying hubs in Protein Interaction Networks. PLoS ONE. 2009;4:e5344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan L, Ijaz U, Salih H, Cheng Z, Htet MNNW, Ge Y et al. Genome-wide identification and comparative analysis of MYB transcription factor family in Musa acuminata and Musa balbisiana. Plants. 2020;2020.

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leinonen R, Sugawara H, Shumway M. Collaboration on behalf of the INSD. The sequence read Archive. Nucleic Acids Res. 2011;39 suppl1:D19–21.

    Article 

    Google Scholar
     

  • Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun X, Wang Z, Gu Q, Li H, Han W, Shi Y. Transcriptome analysis of Cucumis sativus infected by Cucurbit chlorotic yellows virus. Virol J. 2017;14:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaheen T, Rehman A, Abeed AHA, Waqas M, Aslam A, Azeem F et al. Identification and expression analysis of SBP-Box-like (SPL) gene family disclose their contribution to abiotic stress and flower budding in pigeon pea (Cajanus cajan). Funct Plant Biol. 2024;51.

  • Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3‐phosphate dehydrogenase expression. Plant Biotechnol J. 2018;16:1034–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Zhao Y, Zhu J-K. Thriving under stress: how plants Balance Growth and the stress response. Dev Cell. 2020;55:529–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Berhow MA, Vaughn SF, Moser BR, Belenli D, Polat U. Evaluating the Phytochemical potential of Camelina: an Emerging New Crop of Old World Origin. Phytochemicals – biosynthesis, function and application. Cham: Springer International Publishing; 2014. pp. 129–48.

    Chapter 

    Google Scholar
     

  • Aristya GR, Nabillah SAA, Kasiamdari RS, Damaiyani J, Prabowo H. Phylogenetic and genetic variation of sugarcane (Saccharum spp.) from island of Java, Indonesia based on trnK chloroplast gene. Int J Agric Biosci. 2024;13(2):157–66.


    Google Scholar
     

  • Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli G, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics. 2014;15:281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, et al. Genome-wide analysis of bZIP-Encoding genes in Maize. DNA Res. 2012;19:463–76.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, et al. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics. 2015;16:1053.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep. 2016;6:22783.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han H, Xu F, Li Y, Yu L, Fu M, Liao Y, et al. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Sci Rep. 2021;11:23420.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu X, Chu Z. Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics. 2015;16:227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y-Y, Meng D, Li M, Cheng L. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica). Tree Genet Genomes. 2016;12:82.

    Article 

    Google Scholar
     

  • Jing Y, Yu Y, Wang H, Wu Y, Li C. Genome-wide identification and expression analysis of the bZIP gene family in silver birch (Betula pendula Roth). J Res. 2022;33:1615–36.

    Article 
    CAS 

    Google Scholar
     

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine Zipper transcription factor family in Rice. PLANT Physiol. 2007;146:333–50.

    PubMed 

    Google Scholar
     

  • Jin Z, Xu W, Liu A. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L). Planta. 2014;239:299–312.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y. The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. PeerJ. 2019;7:e7878.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Li L, ShangGuan G, Jia C, Deng S, Noman M, et al. Genome-wide identification and expression analysis of bZIP gene family in Carthamus tinctorius L. Sci Rep. 2020;10:15521.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castro PH, Lilay GH, Muñoz-Mérida A, Schjoerring JK, Azevedo H, Assunção AGL. Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci Rep. 2017;7:3806.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi J-W, Kim H-E, Kim S. Two different domain architectures generate structural and functional diversity among bZIP genes in the Solanaceae family. Front Plant Sci. 2022;13.

  • Fang Y, Tyler BM. Nuclear localization of a putative Phytophthora sojae bZIP1 transcription factor is mediated by multiple targeting motifs. Mol Microbiol. 2017;104:621–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Azeem F, Hussain M, Hussain S, Zubair M, Nadeem H, Ali MA et al. Genome-wide analysis and expression profiling of potassium transport related genes in Solanum tuberosum. Pakistan J Agric Sci. 2021;58:81–94.

  • Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic analysis of differentially expressed Maize ZmbZIP genes between Drought and Rewatering Transcriptome reveals bZIP family members involved in Abiotic stress responses. Int J Mol Sci. 2019;20:4103.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rahman S, Ikram AR, Azeem F, Tahir ul Qamar M, Shaheen T. Mehboob-ur-Rahman. Precision Genome editing with CRISPR-Cas9. 2024. pp. 355–72.



  • Source link