Scientific Papers

Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae | Biotechnology for Biofuels and Bioproducts


  • Palmieri A, Petrini M. Tryptophol and derivatives: Natural occurrence and applications to the synthesis of bioactive compounds. Nat Prod Rep. 2019;36:490–530.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarwar M, Frankenberger WT. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant Soil. 1994;160:97–104.

    Article 
    CAS 

    Google Scholar
     

  • Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol. 2016;56:440–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inagaki S, Morimura S, Gondo K, Tang Y, Akutagawa H, Kida K. Isolation of tryptophol as an apoptosis-inducing component of vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells. Biosci Biotechnol Biochem. 2007;71:371–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur R, Kapoor Y, Manjal SK, Rawal RK, Kumar K. Diversity-oriented synthetic approaches for furoindoline: a review. Curr Org Synth. 2019;16:342–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tfelt-Hansen P, De Vries P, Saxena PR. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60:1259–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierce V, Shepperson NB, Todd MH, Waterfall JF. Investigation into the cardioregulatory properties of the α1-adrenoceptor blocker indoramin. Br J Pharmacol. 1986;87:433–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellamy N. Etodolac in the management of pain: a clinical review of a multipurpose analgesic. Inflammopharmacology. 1997;5:139–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiff PL. Ergot and its alkaloids. Am J Pharm Educ. 2006;70:98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizutani M, Inagaki F, Nakanishi T, Yanagihara C, Tamai I, Mukai C. Total syntheses of (-)- and (+)-goniomitine. Org Lett. 2011;13:1796–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandini M, Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew Chemie – Int Ed. 2009;48:9608–44.

    Article 
    CAS 

    Google Scholar
     

  • Bartoli G, Bencivenni G, Dalpozzo R. Organocatalytic strategies for the asymmetric functionalization of indoles. Chem Soc Rev. 2010;39:4449–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JB, Jia YX. Recent progress in transition-metal-catalyzed enantioselective indole functionalizations. Org Biomol Chem. 2017;15:3550–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalpozzo R. Strategies for the asymmetric functionalization of indoles: an update. Chem Soc Rev. 2015;44:742–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubhashe YR, Sawant VM, Gaikar VG. Process intensification of continuous flow synthesis of tryptophol. Ind Eng Chem Res. 2018;57:2787–96.

    Article 
    CAS 

    Google Scholar
     

  • Lv Y, Yu Z, Su W. A continuous kilogram-scale process for the manufacture of 7-ethyltryptophol. Org Process Res Dev. 2011;15:471–5.

    Article 
    CAS 

    Google Scholar
     

  • Nikolau BJ, Perera MADN, Brachova L, Shanks B. Platform biochemicals for a biorenewable chemical industry. Plant J. 2008;54:536–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels. 2021;14:5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suástegui M, Shao Z. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biotechnol. 2016;43:1611–24.

    Article 
    PubMed 

    Google Scholar
     

  • Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res. 2011;11:643–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosazza JP, Juhl R, Davis P. Tryptophol formation by Zygosaccharomyces priorianus. Appl Microbiol. 1973;26:98–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickinson JR, Salgado LEJ, Hewlins MJE. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem. 2003;278:8028–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol. 2008;74:7211–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong X, Luo H, Hong L, Wu J, Wu H, Song C, et al. Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses. J Microbiol. 2022;60:832–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14:115–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Entian KD, Kötter P. 25 yeast genetic strain and plasmid collections. Methods Microbiol. 2007. https://doi.org/10.1016/S0580-9517(06)36025-4.

    Article 

    Google Scholar
     

  • Lee ME, DeLoache WC, Cervantes B, Dueber JE. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol. 2015;4:975–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE. 2008;3: e3647.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE. 2009;2009(4):e5553.

    Article 

    Google Scholar
     

  • Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007;2:924–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan WT, Verma CS, Lane DP, Gan SKE. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep. 2013;33: e00086.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv. 2022;59: 107970.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat Commun. 2019;10:1–13.


    Google Scholar
     

  • Choi KR, Ryu JY, Lee SY. Revisiting statistical design and analysis in scientific research. Small. 2018;14: e1802604.

    Article 
    PubMed 

    Google Scholar
     

  • Suástegui M, Guo W, Feng X, Shao Z. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng. 2016;113:2676–85.

    Article 
    PubMed 

    Google Scholar
     

  • Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, et al. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng. 2017;42:134–44.

    Article 
    PubMed 

    Google Scholar
     

  • Rodriguez A, Chen Y, Khoomrung S, Özdemir E, Borodina I, Nielsen J. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metab Eng. 2017;44:265–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bisquert R, Planells-Cárcel A, Valera-García E, Guillamón JM, Muñiz-Calvo S. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microb Biotechnol. 2022;15:1499–510.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo D, Zhang L, Kong S, Liu Z, Li X, Pan H. Metabolic engineering of Escherichia coli for production of 2-phenylethanol and 2-phenylethyl acetate from glucose. J Agric Food Chem. 2018;66:5886–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang Z, Zhang C, Du G, Chen J. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl Biochem Biotechnol. 2014;172:2012–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Tian Y, Zhou Y, Kan Y, Wu T, Xiao W, et al. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microb Biotechnol. 2021;14:2605–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu H, Hu H, Ng KR, Yang R, Lyu X. De novo production of hydroxytyrosol by metabolic engineering of Saccharomyces cerevisiae. J Agric Food Chem. 2022;70:7490–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli. J Agric Food Chem. 2012;60:979–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Yang C, Xia Y, Zhang L, Liu C, Yang H, et al. High-level production of tyrosol with noninduced recombinant Escherichia coli by metabolic engineering. J Agric Food Chem. 2020;68:4616–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Xu S, Li Y, Shi G. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS ONE. 2021;16: e0258180.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luttik MAH, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng. 2008;10:141–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng. 2015;31:74–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graf R, Mehmann B, Braus GH. Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae. J Bacteriol. 1993;175:1061–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad R, Niederberger P, Hütter R. Tryptophan accumulation in Saccharomyces cerevisiae under the influence of an artificial yeast TRP gene cluster. Yeast. 1987;3:95–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat Commun. 2020;11:4880.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne N, Thomsen P, Mølgaard Knudsen N, Rubaszka P, Kristensen M, Borodina I. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab Eng. 2020;60:25–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuivanen J, Kannisto M, Mojzita D, Rischer H, Toivari M, Jäntti J. Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production. Microb Cell Fact. 2021;20:34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural product assembly lines. Nat Prod Rep. 2012;29:37–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo ZW, Cho JS, Lee SY. Microbial production of methyl anthranilate, a grape flavor compound. Proc Natl Acad Sci USA. 2019;166:10749–56.

    Article 

    Google Scholar
     

  • Iraqui I, Vissers S, Cartiaux M, Urrestarazu A. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet. 1998;257:238–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romagnoli G, Luttik MAH, Kötter P, Pronk JT, Daran JM. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:7538–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Smidt O, Du Preez JC, Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 2008;8:967–78.

    Article 
    PubMed 

    Google Scholar
     

  • Lu H, Li F, Sánchez BJ, Zhu Z, Li G, Domenzain I, et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun. 2019;10:3586.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc. 2019;14:639–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Liu Y, Chen Y, Nielsen J. Current state of aromatics production using yeast: achievements and challenges. Curr Opin Biotechnol. 2020;65:65–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson B, Machas M, Nielsen DR. Creating pathways towards aromatic building blocks and fine chemicals. Curr Opin Biotechnol. 2015;36:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng. 2020;58:94–132.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang MCY, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol. 2006;2:674–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung ST, Lauchli R, Arnold FH. Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol. 2011;22:809–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10:2142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotopka BJ, Li Y, Smolke CD. Synthetic biology strategies toward heterologous phytochemical production. Nat Prod Rep. 2018;35:902–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. Nat Chem. 2018;10:395–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng. 2013;15:55–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD. Complete biosynthesis of opioids in yeast. Science. 2015;349:1095–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Wu X, Ma H, Li J, Liu Z, Guo X, et al. High-level production of hydroxytyrosol in engineered Saccharomyces cerevisiae. ACS Synth Biol. 2022;11:3706–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown S, Clastre M, Courdavault V, O’Connor SE. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A. 2015;112:3205–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, Schrübbers L, et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature. 2022;609:341–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Wu C, Sheng J, Feng X. Molecular basis of 5-hydroxytryptophan synthesis in Saccharomyces cerevisiae. Mol Biosyst. 2016;12:1432–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germann SM, Baallal Jacobsen SA, Schneider K, Harrison SJ, Jensen NB, Chen X, et al. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae. Biotechnol J. 2016;11:717–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne N, Sáez-sáez J, Nielsen M, Dyekjær D. Engineering Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. ChemistryOpen. 2023;12: e202200266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pyne ME, Narcross L, Melgar M, Kevvai K, Mookerjee S, Leite GB, et al. An engineered Aro1 protein degradation approach for increased cis, cis-muconic acid biosynthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 2018;84:e01095-e1118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reifenrath M, Boles E. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng. 2018;45:246–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015;31:181–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Li F, Nielsen J. Genome-scale modeling of yeast metabolism: retrospectives and perspectives. FEMS Yeast Res. 2022;22:1–9.

    Article 

    Google Scholar
     



  • Source link