Scientific Papers

Deciphering LAG-3: unveiling molecular mechanisms and clinical advancements | Biomarker Research


  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol. 2005;35:2081–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171:1393–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, Vignali DA. LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol. 2009;182:1885–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huard B, Mastrangeli R, Prigent P, Bruniquel D, Donini S, El-Tayar N, Maigret B, Dreano M, Triebel F. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci U S A. 1997;94:5744–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang JH, Meijers R, Xiong Y, Liu JH, Sakihama T, Zhang R, Joachimiak A, Reinherz EL. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci U S A. 2001;98:10799–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol. 1995;25:2718–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber S, Karjalainen K. Mouse CD4 binds MHC class II with extremely low affinity. Int Immunol. 1993;5:695–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li N, Workman CJ, Martin SM, Vignali DA. Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J Immunol. 2004;173:6806–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruhashi T, Okazaki IM, Sugiura D, Takahashi S, Maeda TK, Shimizu K, Okazaki T. LAG-3 inhibits the activation of CD4(+) T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol. 2018;19:1415–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169:5392–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacLachlan BJ, Mason GH, Greenshields-Watson A, Triebel F, Gallimore A, Cole DK, Godkin A. Molecular characterization of HLA class II binding to the LAG-3 T cell co-inhibitory receptor. Eur J Immunol. 2021;51:331–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T, Auffray C, Triebel F, Piatier-Tonneau D. haracterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med. 1992;176:327–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760:616–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol Res. 2015;3:412–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Tang L, Zhang G, Wei H, Cui Y, Guo L, Gou Z, Chen X, Jiang D, Zhu Y, et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol Chem. 2004;279:18748–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang L, Yang J, Liu W, Tang X, Chen J, Zhao D, Wang M, Xu F, Lu Y, Liu B, et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology. 2009;137(1498–1508):e1491-1495.


    Google Scholar
     

  • Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell. 2019;176(334–347): e312.


    Google Scholar
     

  • Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Gonçalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DA, Dawson VL, Ko HS, Dawson TM. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):aah3374. https://doi.org/10.1126/science.aah3374.

  • Bae J, Lee SJ, Park CG, Lee YS, Chun T. Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol. 2014;193:3101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruniquel D, Borie N, Hannier S, Triebel F. Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II. Immunogenetics. 1998;48:116–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun H, Sun C, Xiao W. Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine. 2014;65:33–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannier S, Tournier M, Bismuth G, Triebel F. CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol. 1998;161:4058–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994;24:3216–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman CJ, Vignali DA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol. 2005;174:688–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chihara N, Madi A, Kondo T, Zhang H, Acharya N, Singer M, Nyman J, Marjanovic ND, Kowalczyk MS, Wang C, et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature. 2018;558:454–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, Hipkiss E, Vignali DA, Pardoll DM, Drake CG. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol. 2009;182:6659–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007;117:3383–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015;6:27359–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD, Gajewski TF. The EGR2 targets LAG-3 and 4–1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med. 2017;214:381–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huard B, Tournier M, Triebel F. LAG-3 does not define a specific mode of natural killing in human. Immunol Lett. 1998;61:109–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohs I, Ducimetiere L, Marinho J, Kulig P, Becher B, Tugues S. Restoration of Natural Killer Cell Antimetastatic Activity by IL12 and Checkpoint Blockade. Cancer Res. 2017;77:7059–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino A, Zhang B, Dougherty P, Luo X, Wang J, Blazar BR, Miller JS, Cichocki F. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J Clin Invest. 2019;129:3770–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009;15:6225–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brignone C, Grygar C, Marcu M, Schakel K, Triebel F. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol. 2007;179:4202–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman CJ, Vignali DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33:970–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iouzalen N, Andreae S, Hannier S, Triebel F. LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway. Eur J Immunol. 2001;31:2885–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol. 2002;32:2255–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda TK, Sugiura D, Okazaki IM, Maruhashi T, Okazaki T. Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem. 2019;294:6017–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Wang Y, Forbes K, Vignali KM, Heale BS, Saftig P, Hartmann D, Black RA, Rossi JJ, Blobel CP, et al. Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J. 2007;26:494–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avice MN, Sarfati M, Triebel F, Delespesse G, Demeure CE. Lymphocyte activation gene-3, a MHC class II ligand expressed on activated T cells, stimulates TNF-alpha and IL-12 production by monocytes and dendritic cells. J Immunol. 1999;162:2748–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brummendorf TH, Loosen SH, Luedde T. Soluble lymphocyte activation gene-3 (sLAG3) and CD4/CD8 ratio dynamics as predictive biomarkers in patients undergoing immune checkpoint blockade for solid malignancies. Br J Cancer. 2024;130:1013–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Jilisihan B, Wang W, Tang Y, Keyoumu S. Soluble LAG3 acts as a potential prognostic marker of gastric cancer and its positive correlation with CD8+T cell frequency and secretion of IL-12 and INF-gamma in peripheral blood. Cancer Biomark. 2018;23:341–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmastro MM, Styche AJ, Trucco MM, Workman CJ, Vignali DA, Piganelli JD. Modulation of redox balance leaves murine diabetogenic TH1 T cells “LAG-3-ing” behind. Diabetes. 2012;61:1760–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lienhardt C, Azzurri A, Amedei A, Fielding K, Sillah J, Sow OY, Bah B, Benagiano M, Diallo A, Manetti R, et al. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol. 2002;32:1605–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Botticelli A, Zizzari IG, Scagnoli S, Pomati G, Strigari L, Cirillo A, Cerbelli B, Di Filippo A, Napoletano C, ScirocchiF, Rughetti A, Nuti M, Mezi S, Marchetti P. The Role of Soluble LAG3 and Soluble Immune Checkpoints Profile in Advanced Head and Neck Cancer: A Pilot Study. J Pers Med. 2021;11(7):651. https://doi.org/10.3390/jpm11070651.

  • Guo M, Qi F, Rao Q, Sun J, Du X, Qi Z, Yang B, Xia J. Serum LAG-3 Predicts Outcome and Treatment Response in Hepatocellular Carcinoma Patients With Transarterial Chemoembolization. Front Immunol. 2021;12: 754961.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro M, Herishanu Y, Katz BZ, Dezorella N, Sun C, Kay S, Polliack A, Avivi I, Wiestner A, Perry C. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102:874–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sordo-Bahamonde C, Lorenzo-Herrero S, González-Rodríguez AP, Payer ÁR, González-García E, López-Soto A, Gonzalez S. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers (Basel). 2021;13(9):2112. https://doi.org/10.3390/cancers13092112.

  • Triebel F, Hacene K, Pichon MF. A soluble lymphocyte activation gene-3 (sLAG-3) protein as a prognostic factor in human breast cancer expressing estrogen or progesterone receptors. Cancer Lett. 2006;235:147–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueda K, Uemura K, Ito N, Sakai Y, Ohnishi S, Suekane H, Kurose H, Hiroshige T, Chikui K, Nishihara K, et al. Soluble Immune Checkpoint Molecules as Predictors of Efficacy in Immuno-Oncology Combination Therapy in Advanced Renal Cell Carcinoma. Curr Oncol. 2024;31:1701–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol. 2014;31:82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, Gill D, Marlton P, Seymour J, Khanna R. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood. 2006;108:2280–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, Triebel F, Charron D, Aoudjit F, Al-Daccak R, Michel L. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011;186:5173–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byun HJ, Jung WW, Lee DS, Kim S, Kim SJ, Park CG, Chung HY, Chun T. Proliferation of activated CD1d-restricted NKT cells is down-modulated by lymphocyte activation gene-3 signaling via cell cycle arrest in S phase. Cell Biol Int. 2007;31:257–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P, Triebel F. T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts. Eur J Cancer. 2001;37:1709–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keane C, Law SC, Gould C, Birch S, Sabdia MB, Merida de Long L, Thillaiyampalam G, Abro E, Tobin JW, Tan X, et al. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2020;4:1367–77.

    CAS 

    Google Scholar
     

  • Kim YJ, Won CH, Lee MW, Choi JH, Chang SE, Lee WJ. Correlation between tumor-associated macrophage and immune checkpoint molecule expression and its prognostic significance in cutaneous melanoma. J Clin Med. 2020;9(8):2500. https://doi.org/10.3390/jcm9082500.

  • Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto K. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A. 2009;106:13974–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudd CE, Chanthong K, Taylor A. Small Molecule Inhibition of GSK-3 Specifically Inhibits the Transcription of Inhibitory Co-receptor LAG-3 for Enhanced Anti-tumor Immunity. Cell Rep. 2020;30(2075–2082): e2074.


    Google Scholar
     

  • Deng WW, Mao L, Yu GT, Bu LL, Ma SR, Liu B, Gutkind JS, Kulkarni AB, Zhang WF, Sun ZJ. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology. 2016;5: e1239005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh S, Sharma G, Travers J, Kumar S, Choi J, Jun HT, Kehry M, Ramaswamy S, Jenkins D. TSR-033, a Novel Therapeutic Antibody Targeting LAG-3, Enhances T-Cell Function and the Activity of PD-1 Blockade In Vitro and In Vivo. Mol Cancer Ther. 2019;18:632–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, Huang P, Fang T, Yang B, Xia J. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8(+)T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 2020;18:306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son Y, Shin NR, Kim SH, Park SC, Lee HJ. Fibrinogen-like protein 1 modulates sorafenib resistance in human hepatocellular carcinoma cells. Int J Mol Sci. 2021;22(10):5330. https://doi.org/10.3390/ijms22105330.

  • Sun C, Gao W, Liu J, Cheng H, Hao J. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respir Res. 2020;21:210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Qiao HX, Zhou YT, Hong L, Chen JH. Fibrinogen-like-protein 1 promotes the invasion and metastasis of gastric cancer and is associated with poor prognosis. Mol Med Rep. 2018;18:1465–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74:3418–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuazo M, Arasanz H, Fernandez-Hinojal G, Garcia-Granda MJ, Gato M, Bocanegra A, Martinez M, Hernandez B, Teijeira L, Morilla I, et al. Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy. EMBO Mol Med. 2019;11: e10293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gestermann N, Saugy D, Martignier C, Tille L, Fuertes Marraco SA, Zettl M, Tirapu I, Speiser DE, Verdeil G. LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. Oncoimmunology. 2020;9:1736792.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, Niclou SP, Ollert M, Berchem G, Janji B, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131:1617–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zelba H, Bedke J, Hennenlotter J, Mostbock S, Zettl M, Zichner T, Chandran A, Stenzl A, Rammensee HG, Gouttefangeas C. PD-1 and LAG-3 Dominate Checkpoint Receptor-Mediated T-cell Inhibition in Renal Cell Carcinoma. Cancer Immunol Res. 2019;7:1891–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N Engl J Med. 2022;386:24–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemenway G, Anker JF, Riviere P, Rose BS, Galsky MD, Ghatalia P. Advancements in Urothelial Cancer Care: Optimizing Treatment for Your Patient. Am Soc Clin Oncol Educ Book. 2024;44: e432054.

    Article 
    PubMed 

    Google Scholar
     

  • Feeney K, Joubert WL, Bordoni RE, Babu S, Marimuthu S, Hipkin B, Huang L, Tam R, Rivera MA. RELATIVITY-123: A phase 3, randomized, open-label study of nivolumab (NIVO) + relatlimab (RELA) fixed-dose combination (FDC) versus regorafenib or trifluridine + tipiracil (TAS-102) in later-line metastatic colorectal cancer (mCRC). Journal of Clinical Oncology. 2023;41:TPS278–TPS278.

    Article 

    Google Scholar
     

  • Amaria RN, Postow M, Burton EM, Tetzlaff MT, Ross MI, Torres-Cabala C, Glitza IC, Duan F, Milton DR, Busam K, et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature. 2022;611:155–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegewisch-Becker S, Mendez G, Chao J, Nemecek R, Feeney K, Van Cutsem E, Al-Batran SE, Mansoor W, Maisey N, Pazo Cid R, et al. First-Line Nivolumab and Relatlimab Plus Chemotherapy for Gastric or Gastroesophageal Junction Adenocarcinoma: The Phase II RELATIVITY-060 Study. J Clin Oncol. 2024;42:2080–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med. 2020;383:2207–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Overman MJ, Gelsomino F, Aglietta M, Wong M, Limon Miron ML, Leonard G, García-Alfonso P, Hill AG, Cubillo Gracian A, Van Cutsem E, El-Rayes B, McCraith SM, He B, Lei M, Lonardi S. Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Immunother Cancer. 2024;12(5):e008689. https://doi.org/10.1136/jitc-2023-008689.

  • Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamid O, Wang D, Kim TM, Kim S-W, Lakhani NJ, Johnson ML, Groisberg R, Papadopoulos KP, Kaczmar JM, Middleton MR, et al. Clinical activity of fianlimab (REGN3767), a human anti-LAG-3 monoclonal antibody, combined with cemiplimab (anti-PD-1) in patients (pts) with advanced melanoma. J Clin Oncol. 2021;39:9515–9515.

    Article 

    Google Scholar
     

  • Baramidze A, Gogishvili M, Makharadze T, Zhvania M, Vacharadze K, Crown J, Melkadze T, Hamid O, Long GV, Robert C, Sznol M, Martinez-Said H, Mani J, Chaudhry U, Salvati M, Lowy I, Fury MG, Gullo G. A phase 3 trial of fianlimab (anti–LAG-3) plus cemiplimab (anti–PD-1) versus pembrolizumab in patients with previously untreated unresectable locally advanced or metastatic melanoma. J Clin Oncol. 2023 41:16_suppl,TPS9602-TPS9602. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS9602.

  • Andre T, Pietrantonio F, Avallone A, Gumus M, Wyrwicz L, Kim JG, Yalcin S, Kwiatkowski M, Lonardi S, Zolnierek J, et al. KEYSTEP-008: phase II trial of pembrolizumab-based combination in MSI-H/dMMR metastatic colorectal cancer. Future Oncol. 2023;19:2445–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garralda E, Sukari A, Lakhani NJ, Patnaik A, Lou Y, Im SA, Golan T, Geva R, Wermke M, de Miguel M, et al. A first-in-human study of the anti-LAG-3 antibody favezelimab plus pembrolizumab in previously treated, advanced microsatellite stable colorectal cancer. ESMO Open. 2022;7: 100639.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutierrez M, Lam WS, Hellmann MD, Gubens MA, Aggarwal C, Tan DSW, Felip E, Chiu JWY, Lee JS, Yang JC, et al. Biomarker-directed, pembrolizumab-based combination therapy in non-small cell lung cancer: phase 2 KEYNOTE-495/KeyImPaCT trial interim results. Nat Med. 2023;29:1718–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, et al. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol. 2024;42:2928–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luke JJ, Patel MR, Blumenschein GR, Hamilton E, Chmielowski B, Ulahannan SV, Connolly RM, Santa-Maria CA, Wang J, Bahadur SW, et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nat Med. 2023;29:2814–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Z, Guo Y, Bai Y, Ying J, Meng Z, Chen Z, Gu S, Zhang J, Liang J, Hou X, et al. Tebotelimab, a PD-1/LAG-3 bispecific antibody, in patients with advanced hepatocellular carcinoma who had failed prior targeted therapy and/or immunotherapy: An open-label, single-arm, phase 1/2 dose-escalation and expansion study. J Clin Oncol. 2023;41:578–578.

    Article 

    Google Scholar
     

  • Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, Ericsson-Gonzalez PI, Cote CH, Salgado R, Sanchez V, Dean PT, Opalenik SR, Schreeder DM, Rimm DL, Kim JY, Bordeaux J, Loi S, Horn L, Sanders ME, Ferrell PB Jr, Xu Y, Sosman JA, Davis RS, Balko JM. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3(24):e120360. https://doi.org/10.1172/jci.insight.120360.

  • Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6: e1249561.

    Article 
    PubMed 

    Google Scholar
     

  • Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim SY, Velickovic R, Wongchenko M, et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell. 2019;35(238–255): e236.


    Google Scholar
     

  • Yap TA, LoRusso PM, Wong DJ, Hu-Lieskovan S, Papadopoulos KP, Holz JB, Grabowska U, Gradinaru C, Leung KM, Marshall S, et al. A Phase 1 First-in-Human Study of FS118, a Tetravalent Bispecific Antibody Targeting LAG-3 and PD-L1 in Patients with Advanced Cancer and PD-L1 Resistance. Clin Cancer Res. 2023;29:888–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen BJ, Dashnamoorthy R, Galera P, Makarenko V, Chang H, Ghosh S, Evens AM. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma. Oncotarget. 2019;10:2030–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C, Chen S, Wang C, Li Y. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020;13:28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang ZZ, Kim HJ, Villasboas JC, Chen YP, Price-Troska T, Jalali S, Wilson M, Novak AJ, Ansell SM. Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 2017;8:61425–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, Ravandi F, Jabbour EJ, Al-Hamal Z, Konopleva M, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmerman J, Lavie D, Johnson NA, Avigdor A, Borchmann P, Andreadis C, Bazargan A, Gregory G, Keane C, Inna T, et al. Favezelimab (anti–LAG-3) plus pembrolizumab in patients with relapsed or refractory (R/R) classical Hodgkin lymphoma (cHL) after anti–PD-1 treatment: An open-label phase 1/2 study. J Clin Oncol. 2022;40:7545–7545.

    Article 

    Google Scholar
     

  • Li X, Zhang P, Sun H, Han L, Jiang Z, Yu J. Bispecific antibodies as monotherapy or in combinations for hematological malignancies: latest updates from the EHA 2023 annual meeting. Expert Opin Biol Ther. 2023;23:1193–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ, Zarour HM. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest. 2015;125:2046–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mollavelioglu B, Cetin Aktas E, Cabioglu N, Abbasov A, Onder S, Emiroglu S, Tukenmez M, Muslumanoglu M, Igci A, Deniz G, Ozmen V. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer. World J Surg Oncol. 2022;20:349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popp FC, Capino I, Bartels J, Damanakis A, Li J, Datta RR, Löser H, Zhao Y, Quaas A, Lohneis P, Bruns CJ. On behalf Of the pancalyze study group. Expression of immune checkpoint Regulators IDO, VISTA, LAG3, and TIM3 in Resected Pancreatic Ductal Adenocarcinoma. Cancers (Basel). 2021;13(11):2689. https://doi.org/10.3390/cancers13112689.

  • Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kolodzinska K, Dwernicka W, Oslizlo M, Kulbacka J, Novickij V, Karlowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother. 2023;72:3405–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takamatsu K, Tanaka N, Hakozaki K, Takahashi R, Teranishi Y, Murakami T, Kufukihara R, Niwa N, Mikami S, Shinojima T, et al. Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy. Nat Commun. 2021;12:5547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tassi E, Grazia G, Vegetti C, Bersani I, Bertolini G, Molla A, Baldassari P, Andriani F, Roz L, Sozzi G, et al. Early Effector T Lymphocytes Coexpress Multiple Inhibitory Receptors in Primary Non-Small Cell Lung Cancer. Cancer Res. 2017;77:851–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wuerdemann N, Pütz K, Eckel H, Jain R, Wittekindt C, Huebbers CU, Sharma SJ, Langer C, Gattenlöhner S, Büttner R, Speel EJ, Suchan M, Wagner S, Quaas A, Klussmann JP. LAG-3, TIM-3 and VISTA Expression on Tumor-Infiltrating Lymphocytes in Oropharyngeal Squamous Cell Carcinoma-Potential Biomarkers for Targeted Therapy Concepts. Int J Mol Sci. 2020;22(1):379. https://doi.org/10.3390/ijms22010379.

  • Dai T, Sun H, Liban T, Vicente-Suarez I, Zhang B, Song Y, Jiang Z, Yu J, Sheng J, Lv B. A novel anti-LAG-3/TIGIT bispecific antibody exhibits potent anti-tumor efficacy in mouse models as monotherapy or in combination with PD-1 antibody. Sci Rep. 2024;14:10661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen EEW, Tourneau CCL, Schaub R, Bartenstein M, Cheng L, Licitra LF. Phase 2 trial of retifanlimab (anti–PD-1) in combination with INCAGN02385 (anti–LAG-3) and INCAGN02390 (anti–TIM-3) as first-line treatment in patients with PD-L1–positive recurrent/metastatic squamous cell carcinoma of the head and neck. Journal of Clinical Oncology. 2023;41:TPS6104–TPS6104.

  • Hamid O, Gutierrez M, Mehmi I, Dudzisz-Sledz M, Hoyle PE, Wei W, Powderly JD. A phase 1/2 study of retifanlimab (INCMGA00012, Anti–PD-1), INCAGN02385 (Anti–LAG-3), and INCAGN02390 (Anti–TIM-3) combination therapy in patients (Pts) with advanced solid tumors. J Clin Oncol. 2023;41:2599–2599.

    Article 

    Google Scholar
     

  • Desai J, Meniawy T, Beagle B, Li Z, Mu S, Wu J, Denlinger CS, Messersmith WA. Bgb-A425, an investigational anti-TIM-3 monoclonal antibody, in combination with tislelizumab, an anti-PD-1 monoclonal antibody, in patients with advanced solid tumors: A phase I/II trial in progress. Journal of Clinical Oncology. 2020;38:TPS3146–TPS3146.

    Article 

    Google Scholar
     

  • Banna GL, Hassan MA, Signori A, Giunta EF, Maniam A, Anpalakhan S, Acharige S, Ghose A, Addeo A. Neoadjuvant Chemo-Immunotherapy for Early-Stage Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JAMA Netw Open. 2024;7: e246837.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, Gonzalez S. Chemo-immunotherapy: a new trend in cancer treatment. Cancers (Basel). 2023;15(11):2912. https://doi.org/10.3390/cancers15112912.

  • Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Res Sq [Preprint]. 2023:rs.3.rs-3290264. https://doi.org/10.21203/rs.3.rs-3290264/v1. Update in: Nat Commun. 2024;15(1):3178. https://doi.org/10.1038/s41467-024-47433-y.

  • Zhang Y, Zhang K, Wen H, Ge D, Gu J, Zhang C. FGL1 in plasma extracellular vesicles is correlated with clinical stage of lung adenocarcinoma and anti-PD-L1 response. Clin Exp Immunol. 2024;216:68–79.

    Article 
    PubMed 

    Google Scholar
     

  • Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol. 2021;14:147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasikumar PG, Ramachandra M. Small Molecule Agents Targeting PD-1 Checkpoint Pathway for Cancer Immunotherapy: Mechanisms of Action and Other Considerations for Their Advanced Development. Front Immunol. 2022;13: 752065.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of immune checkpoints: small molecule- and peptide-based approaches. J Pers Med. 2024;14(1):68. https://doi.org/10.3390/jpm14010068.

  • Abdel-Rahman SA, Rehman AU, Gabr MT. Discovery of First-in-Class Small Molecule Inhibitors of Lymphocyte Activation Gene 3 (LAG-3). ACS Med Chem Lett. 2023;14:629–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link