Scientific Papers

The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer | Human Genomics


  • Alberts B, Wilson JH, Hunt T. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008. xxxiii, 1601, 90 p. p.

  • Skalska L, Beltran-Nebot M, Ule J, Jenner RG. Regulatory feedback from nascent RNA to chromatin and transcription. Nat Rev Mol Cell Biol. 2017;18(5):331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X, Xiao R, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136(4):777–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebauer F, Schwarzl T, Valcarcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article 

    Google Scholar
     

  • Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13(8):894–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article 

    Google Scholar
     

  • Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science. 2023;380(6643):eabn3943.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galeota-Sprung B, Sniegowski P, Ewens W. Mutational load and the functional fraction of the Human Genome. Genome Biol Evol. 2020;12(4):273–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meader S, Ponting CP, Lunter G. Massive turnover of functional sequence in human and other mammalian genomes. Genome Res. 2010;20(10):1335–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pheasant M, Mattick JS. Raising the estimate of functional human sequences. Genome Res. 2007;17(9):1245–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leypold NA, Speicher MR. Evolutionary conservation in noncoding genomic regions. Trends Genet. 2021;37(10):903–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22(1):1–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kutter C, Brown GD, Goncalves A, Wilson MD, Watt S, Brazma A, et al. Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. Nat Genet. 2011;43(10):948–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 2012;8(7):e1002841.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huppertz I, Perez-Perri JI, Mantas P, Sekaran T, Schwarzl T, Russo F, et al. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol Cell. 2022;82(14):2666–80. e11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 2018;50(12):1705–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, et al. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun. 2019;10(1):5092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sommerauer C, Kutter C. Noncoding RNAs and RNA-binding proteins: emerging governors of liver physiology and metabolic diseases. Am J Physiol Cell Physiol. 2022;323(4):C1003–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sondergaard JN, Sommerauer C, Atanasoai I, Hinte LC, Geng K, Guiducci G, et al. CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism. Gut. 2022;71(10):2081–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aviran S, Incarnato D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J Mol Biol. 2022;434(18):167635.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morandi E, van Hemert MJ, Incarnato D. SHAPE-guided RNA structure homology search and motif discovery. Nat Commun. 2022;13(1):1722.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spitale RC, Incarnato D. Probing the dynamic RNA structurome and its functions. Nat Rev Genet. 2023;24(3):178–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao W, Yang A, Rivas E. Thirteen dubious ways to detect conserved structural RNAs. IUBMB Life. 2023;75(6):471–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8(6):479–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat Biotechnol. 2019;37(2):169–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trendel J, Schwarzl T, Horos R, Prakash A, Bateman A, Hentze MW, et al. The human RNA-Binding proteome and its dynamics during translational arrest. Cell. 2019;176(1–2):391–403. e19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao W, Zhang S, Zhu Y, Xi X, Bao P, Ma Z, et al. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res. 2022;50(D1):D287–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao JY, Yang B, Zhang YC, Wang XJ, Ye Y, Peng JW, et al. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs). Nucleic Acids Res. 2020;48(D1):D307–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang J, Tang Q, He J, Li L, Yang N, Yu S, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2022;50(D1):D326–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Sidoli S, Warneford-Thomson R, Tatomer DC, Wilusz JE, Garcia BA, et al. High-resolution mapping of RNA-Binding regions in the Nuclear Proteome of embryonic stem cells. Mol Cell. 2016;64(2):416–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 2011;39(Database issue):D301–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caudron-Herger M, Jansen RE, Wassmer E, Diederichs S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 2021;49(D1):D425–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci. 2022;9:954926.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore KS, t Hoen PAC. Computational approaches for the analysis of RNA-protein interactions: a primer for biologists. J Biol Chem. 2019;294(1):1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstberger S, Hafner M, Ascano M, Tuschl T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv Exp Med Biol. 2014;825:1–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukong KE, Chang KW, Khandjian EW, Richard S. RNA-binding proteins in human genetic disease. Trends Genet. 2008;24(8):416–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289–97.

    Article 
    PubMed 

    Google Scholar
     

  • Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3).

  • Barba-Aliaga M, Alepuz P, Perez-Ortin JE. Eukaryotic RNA polymerases: the many ways to transcribe a gene. Front Mol Biosci. 2021;8:663209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girbig M, Misiaszek AD, Muller CW. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol. 2022;23(9):603–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brockdorff N. X-chromosome inactivation: closing in on proteins that bind xist RNA. Trends Genet. 2002;18(7):352–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loda A, Collombet S, Heard E. Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol. 2022;23(4):231–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long Y, Hwang T, Gooding AR, Goodrich KJ, Rinn JL, Cech TR. RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet. 2020;52(9):931–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen M, Ulitksy I. The links are still missing: revisiting the role of RNA as a guide for chromatin-associated proteins. Mol Cell. 2024;84(7):1178–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4(10).

  • Lopes I, Altab G, Raina P, de Magalhaes JP. Gene size matters: an analysis of gene length in the Human Genome. Front Genet. 2021;12:559998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature. 2015;520(7549):640–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedoriw AM, Starmer J, Yee D, Magnuson T. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals. PLoS Genet. 2012;8(1):e1002468.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nerurkar P, Altvater M, Gerhardy S, Schutz S, Fischer U, Weirich C, et al. Eukaryotic Ribosome Assembly and Nuclear Export. Int Rev Cell Mol Biol. 2015;319:107–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paule MR, White RJ. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 2000;28(6):1283–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henras AK, Plisson-Chastang C, O’Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015;6(2):225–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dever TE, Dinman JD, Green R. Translation elongation and recoding in eukaryotes. Cold Spring Harb Perspect Biol. 2018;10(8).

  • Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016;44(D1):D184–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet. 2007;23(12):614–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006;34(21):6137–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-Derived fragments suppress breast Cancer progression via YBX1 displacement. Cell. 2015;161(4):790–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 2009;23(22):2639–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schorn AJ, Gutbrod MJ, LeBlanc C, Martienssen R. LTR-Retrotransposon control by tRNA-Derived small RNAs. Cell. 2017;170(1):61–e7111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valadkhan S, Gunawardane LS. Role of small nuclear RNAs in eukaryotic gene expression. Essays Biochem. 2013;54:79–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bratkovic T, Bozic J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergeron D, Paraqindes H, Fafard-Couture E, Deschamps-Francoeur G, Faucher-Giguere L, Bouchard-Bourelle P, et al. snoDB 2.0: an enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res. 2023;51(D1):D291–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kufel J, Grzechnik P. Small nucleolar RNAs tell a different tale. Trends Genet. 2019;35(2):104–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, dicer-dependent small RNAs. Genes Dev. 2008;22(20):2773–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun. 2017;8(1):1411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland JE, Mudge JM, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2023;51(D1):D942–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012;22(9):1616–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patop IL, Wust S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16):e100836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8(5):e1000384.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartorelli V, Lauberth SM. Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol. 2020;27(6):521–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levengood JD, Potoyan D, Penumutchu S, Kumar A, Zhou Q, Wang Y, et al. Thermodynamic coupling of the tandem RRM domains of hnRNP A1 underlie its pleiotropic RNA binding functions. Sci Adv. 2024;10(28):eadk6580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, et al. 5’-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997;11(24):3306–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414(6861):322–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA. 2012;3(1):92–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol. 2017;18(10):637–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oesterreich FC, Herzel L, Straube K, Hujer K, Howard J, Neugebauer KM. Splicing of nascent RNA coincides with Intron exit from RNA polymerase II. Cell. 2016;165(2):372–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008;14(5):802–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis CJ, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. 2017;18(3):202–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malla S, Prasad Bhattarai D, Groza P, Melguizo-Sanchis D, Atanasoai I, Martinez-Gamero C, et al. ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export. EMBO Rep. 2022;23(3):e53191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Z, Pan JN, et al. Regulation of co-transcriptional Pre-mRNA splicing by m(6)a through the low-complexity protein hnRNPG. Mol Cell. 2019;76(1):70–e819.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20(10):599–614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill CH, Boreikaite V, Kumar A, Casanal A, Kubik P, Degliesposti G, et al. Activation of the endonuclease that defines mRNA 3’ ends requires incorporation into an 8-Subunit core cleavage and polyadenylation factor complex. Mol Cell. 2019;73(6):1217–e3111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18(1):18–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhn U, Gundel M, Knoth A, Kerwitz Y, Rudel S, Wahle E. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem. 2009;284(34):22803–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspden JL, Wallace EWJ, Whiffin N. Not all exons are protein coding: addressing a common misconception. Cell Genom. 2023;3(4):100296.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352(6292):1413–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber R, Ghoshdastider U, Spies D, Dure C, Valdivia-Francia F, Forny M, et al. Monitoring the 5’UTR landscape reveals isoform switches to drive translational efficiencies in cancer. Oncogene. 2023;42(9):638–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berkovits BD, Mayr C. Alternative 3’ UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522(7556):363–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang K, Ly J, Bartel DP. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell. 2024;59(8):1058–e7411.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, et al. Distinct Processing of lncRNAs contributes to non-conserved functions in stem cells. Cell. 2020;181(3):621–36. e22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol. 2017;19(9):1105–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol. 2015;16(7):431–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preiss T, Hentze MW. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature. 1998;392(6675):516–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quax TE, Claassens NJ, Soll D, van der Oost J. Codon Bias as a Means to Fine-Tune Gene expression. Mol Cell. 2015;59(2):149–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 2010;141(2):344–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudolph KL, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, et al. Codon-Driven Translational Efficiency is stable across diverse mammalian cell States. PLoS Genet. 2016;12(5):e1006024.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007;8(2):113–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 2014;56(1):104–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100(17):9779–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.

    Article 
    PubMed 

    Google Scholar
     

  • Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH. beta-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev. 2012;26(17):1885–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchan JR. mRNP granules. Assembly, function, and connections with disease. RNA Biol. 2014;11(8):1019–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell. 2023;186(22):4737–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kechavarzi B, Janga SC. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol. 2014;15(1):R14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang ZL, Li B, Luo YX, Lin Q, Liu SR, Zhang XQ, et al. Comprehensive genomic characterization of RNA-Binding proteins across human cancers. Cell Rep. 2018;22(1):286–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Huang S, Chen Z, Han Z, Li K, Chen C, et al. Development and validation of an RNA binding protein-associated prognostic model for hepatocellular carcinoma. BMC Cancer. 2020;20(1):1136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizutani R, Imamachi N, Suzuki Y, Yoshida H, Tochigi N, Oonishi T, et al. Oncofetal protein IGF2BP3 facilitates the activity of proto-oncogene protein eIF4E through the destabilization of EIF4E-BP2 mRNA. Oncogene. 2016;35(27):3495–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sysoev VO, Fischer B, Frese CK, Gupta I, Krijgsveld J, Hentze MW, et al. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun. 2016;7:12128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG, et al. Cancer plasticity: the role of mRNA translation. Trends Cancer. 2021;7(2):134–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao W, Gallardo-Dodd CJ, Kutter C. Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons. Genome Res. 2022;32(1):97–110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt BM, Rudolph KL, Karagianni P, Fonseca NA, White RJ, Talianidis I, et al. High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-tRNA interface. Genome Res. 2014;24(11):1797–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015;160(6):1111–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated expression of specific tRNAs drives Gene expression and Cancer progression. Cell. 2016;165(6):1416–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, et al. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun Biol. 2018;1:234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uemura M, Zheng Q, Koh CM, Nelson WG, Yegnasubramanian S, De Marzo AM. Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene. 2012;31(10):1254–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou H, Wang Y, Lv Q, Zhang J, Wang Q, Gao F, et al. Overexpression of ribosomal RNA in the development of human cervical Cancer is Associated with rDNA promoter hypomethylation. PLoS ONE. 2016;11(10):e0163340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 2011;44(4):660–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzalez E, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Li K, Bai J, Van Damme R, Zhang W, Alba M, et al. A snoRNA-tRNA modification network governs codon-biased cellular states. Proc Natl Acad Sci U S A. 2023;120(41):e2312126120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature. 2017;552(7683):57–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzalez-Barrios R, Contreras-Espinosa L, et al. The promising role of miR-21 as a Cancer Biomarker and its importance in RNA-Based therapeutics. Mol Ther Nucleic Acids. 2020;20:409–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007;67(20):9762–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Li Y, Li Y, Ren K, Li X, Han X et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol. 2017;31(9).

  • Liu L, Yang J, Zhu X, Li D, Lv Z, Zhang X. Long noncoding RNA H19 competitively binds mir-17-5p to regulate YES1 expression in thyroid cancer. FEBS J. 2016;283(12):2326–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prensner JR, Chen W, Han S, Iyer MK, Cao Q, Kothari V, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 2014;16(11):900–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic Stability by Sequestering PUMILIO proteins. Cell. 2016;164(1–2):69–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh JM, Venters CC, Di C, Pinto AM, Wan L, Younis I, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 2020;11(1):1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med. 2013;19(2):209–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achour C, Bhattarai DP, Groza P, Roman AC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene. 2023;42(12):911–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6)a reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlesinger D, Elsasser SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J. 2022;289(1):53–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atanasoai I, Papavasileiou S, Preiß N, Kutter C. Large-scale identification of RBP-RNA interactions by RAPseq refines essentials of post-transcriptional gene regulation. bioRxiv. 2021.

  • Sekar V, Marmol-Sanchez E, Kalogeropoulos P, Stanicek L, Sagredo EA, Widmark A et al. Detection of transcriptome-wide microRNA-target interactions in single cells with agoTRIBE. Nat Biotechnol. 2024;42(8):1296-302.

  • Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA et al. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. bioRxiv. 2023.

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider B, Sweeney BA, Bateman A, Cerny J, Zok T, Szachniuk M. When will RNA get its AlphaFold moment? Nucleic Acids Res. 2023;51(18):9522–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei J, Chen S, Zong L, Gao X, Li Y. Protein-RNA interaction prediction with deep learning: structure matters. Brief Bioinform. 2022;23(1).



  • Source link