Scientific Papers

The Jan Sjödin faba bean mutant collection: morphological and molecular characterization | Hereditas


  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Biol. 2011;2011:314829. https://doi.org/10.1155/2011/314829.

    Article 

    Google Scholar
     

  • Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res. 2010;115:270–8. https://doi.org/10.1016/j.fcr.2008.10.003.

    Article 

    Google Scholar
     

  • Sjödin J. Some observations in X1 and X2 of Vicia faba L., after treatment with different mutagens. Hereditas. 1962;48:565–86. https://www.cabidigitallibrary.org/doi/full/10.5555/19631603889.


    Google Scholar
     

  • Sjödin J. Some unifoliata mutants in Vicia faba L. Hereditas. 1964;51:279–90. https://doi.org/10.1111/j.1601-5223.1964.tb01936.x.

    Article 

    Google Scholar
     

  • Sjödin J. Induced morphological variation in Vicia faba L. Hereditas. 1971;67:155–79. https://doi.org/10.1111/j.1601-5223.1971.tb02371.x.

  • Sjödin J. (1965) Induced reciprocal translocations in Vicia faba. In: Induction of Mutations and the Mutation Process (Eds. J. Veleminsky and T. Gichner), Prague, Czech Republic, pp. 387–390. https://www.cabidigitallibrary.org/doi/full/10.5555/19671600124

  • Sjödin J, Hagberg A. A survey of translocation studies in Vicia faba L. Hereditas. 1968;59:242–52. https://doi.org/10.1111/j.1601-5223.1968.tb02174.x.

    Article 

    Google Scholar
     

  • Sjödin J. Induced asynaptic mutants in Vicia faba L. Hereditas. 1970;66:215–32. https://doi.org/10.1111/j.1601-5223.1970.tb02347.x.

    Article 

    Google Scholar
     

  • Sjödin J. Induced paracentric and pericentric inversions in Vicia faba L. Hereditas. 1971;67:39–54. https://doi.org/10.1111/j.1601-5223.1971.tb02357.x.

  • Filippetti A, De Pace C. Improvement of seed yield in Vicia faba L. by using experimental mutagenesis. II. Comparison of gamma-radiation and ethyl-methane-sulphonate (EMS) in production of morphological mutants. Euphytica. 1986;35:49–59. https://doi.org/10.1007/BF00028540.

    Article 

    Google Scholar
     

  • Cabrera A. Inheritance of flower color in Vicia faba L. FABIS. 1988;22:3–7.


    Google Scholar
     

  • Ramsay G, Griffiths DW, Dow ND. Spontaneous and induced variation in levels of vicine and convicine in faba beans. Asp Appl Biol. 1991;27:43–7.


    Google Scholar
     

  • Duc G. Mutagenesis of faba bean (Vicia faba L.) and the identification of five different genes controlling no nodulation, ineffective nodulation or supernodulation. Euphytica. 1995;83:147–52. https://doi.org/10.1007/BF01678042.

    Article 

    Google Scholar
     

  • O’Sullivan DM, Angra D. Advances in faba bean genetics and genomics. Front Genet. 2016;7:150. https://doi.org/10.3389/fgene.2016.00150.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khazaei H, Mäkelä PS, Stoddard FL. Ion beam irradiation mutagenesis in rye (Secale cereale L.), linseed (Linum usitatissimum L.) and faba bean (Vicia faba L.). Agri Food Sci. 2018;27:146–51. https://doi.org/10.23986/afsci.70780.

  • Mao D, Michelmore S, Paull J, Preston C, Sutton T, Oldach K, Yang SY, McMurray L. Phenotypic and molecular characterisation of novel Vicia faba germplasm with tolerance to acetohydroxyacid synthase-inhibiting herbicides (AHAS) developed through mutagenesis techniques. Pest Manag Sci. 2019;75:2698–705. https://doi.org/10.1002/ps.5378.

    Article 
    PubMed 

    Google Scholar
     

  • Nurmansyah, Alghamdi SA, Migdadi HM. Morphological diversity of faba bean (Vicia faba L.) M2 mutant populations induced by gamma radiation and diethyl sulfate. J King Saud Univ Sci. 2020;32:1647–58. https://doi.org/10.1016/j.jksus.2019.12.024.

    Article 

    Google Scholar
     

  • Adhikari KN, Khazaei H, Ghaouti L, Maalouf F, Vandenberg A, Link W, et al. Conventional and molecular breeding tools for accelerating genetic gain in faba bean (Vicia faba L.). Front Plant Sci. 2021;12:744259. https://doi.org/10.3389/fpls.2021.744259.

  • Nurmansyah, Migdadi HM, Alghamdi SS, Khan MA, Afzal M. Genetic diversity and population structure of two faba bean mutant populations based on AFLP markers. Legume Res. 2021;44:759–65. https://doi.org/10.18805/LR-594.

    Article 

    Google Scholar
     

  • Khazaei H, O’Sullivan DM, Stoddard FL, Adhikari KN, Paull JG, Schulman AH, Andersen SU, Vandenberg A. Recent advances in faba bean genetic and genomic tools for crop improvement. Legume Sci. 2021;3:e75. https://doi.org/10.1002/leg3.75.

    Article 

    Google Scholar
     

  • Auvinen P, Chang W, Holm L, Jääskeläinen M, Khazaei H, Laine PK, et al. (2023) A faba bean pan-genome for advancing sustainable protein security. Legume Perspect. 24:7–9. https://www.legumesociety.org/wp-content/uploads/2024/01/legum_perspect_24.pdf. Accessed 28 July 2024.

  • Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, et al. The giant diploid faba genome unlocks variation in a global protein crop. Nature. 2023;615:652–9. https://doi.org/10.1038/s41586-023-05791-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes J, Khazaei H, Vandenberg A. The study of genetics of flower color in faba bean reveals generous diversity to be used in the horticulture industry. HortScience. 2020;55:1584–8. https://doi.org/10.21273/HORTSCI15238-20.

    Article 

    Google Scholar
     

  • Ricciardi L, Filippetti A, De Pace C, Marzano CF. Inheritance of seed coat colour in broad bean (Vicia faba L.). Euphytica. 1985;34:43–5. https://doi.org/10.1007/BF00022862.

  • IBPGR/ICARDA. (1985) Faba bean descriptors. AGPG: IBPGR/85/116, Rome, Italy, p. 19. Accessed 28 July 2024. https://cgspace.cgiar.org/server/api/core/bitstreams/e5a81aac-90fc-4298-b22c-910fb25b7f30/content

  • Suso MJ, Aguilar JA, Moreno MT. Registration of unifoliate faba bean genetic stocks. Crop Sci. 2003;43:1571–2. https://doi.org/10.2135/cropsci2003.1571.

    Article 

    Google Scholar
     

  • Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL. Genetic analysis reveals a novel locus in Vicia faba decoupling pigmentation in the flower from that in the extra-floral nectaries. Mol Breed. 2014;34:1507–13. https://doi.org/10.1007/s11032-014-0100-9.

    Article 

    Google Scholar
     

  • Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.


    Google Scholar
     

  • Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, Demurtas O, Ferrante P, Gramazio P, Mini P, Portis E, Scaglione D, Toppino L, Vilanova S, Díez MJ, Rotino GL, Lanteri S, Prohens J, Giuliano G. Single Primer Enrichment Technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci. 2019;10:1005. https://doi.org/10.3389/fpls.2019.01005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6:925–9. https://doi.org/10.1111/2041-210X.12382.

    Article 

    Google Scholar
     

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. https://doi.org/10.1093/bioinformatics/btm308.

    Article 
    PubMed 

    Google Scholar
     

  • Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5. https://doi.org/10.1093/bioinformatics/btn129.

    Article 
    PubMed 

    Google Scholar
     

  • Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70:3321–3. https://doi.org/10.1073/pnas.70.12.3321.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52:W78–82. https://doi.org/10.1093/nar/gkae268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoffel MA, Esser M, Kardos M, Humble E, Nichols H, David P, Hoffman JI. inbrandR: An R package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol. 2016;7:1331–9. https://doi.org/10.1111/2041-210X.12588.

    Article 

    Google Scholar
     

  • Prasanna S, Jain SM. Mutant resources and mutagenomics in crop plants. Emir J Food Agric. 2017;29:651–7. https://doi.org/10.9755/ejfa.2017.v29.i9.86.

    Article 

    Google Scholar
     

  • ICARDA – International Center for Agricultural Research in the Dry Areas. Third conspectus of genetic variation within Vicia faba. Syria: FABIS, Aleppo; 1986. p. 54.


    Google Scholar
     

  • Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ, Sree KS, Gershenzon J, Widmer A, Huber M. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun. 2019;10:1243. https://doi.org/10.1038/s41467-019-09235-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sim S-C, Robbins M, Deynze AV, Michel AP, Francis DM. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity. 2011;106:927–35. https://doi.org/10.1038/hdy.2010.139.

  • Link W, Hanafy M, Malenica N, Jacobsen H-J, Jelenić S. Faba bean. In: Kole C, Hall TC, editors. Compendium of transgenic crop plants: transgenic legume grains and forages. New York: Wiley; 2008; vol. 3, p. 71–88.

  • Benlloch R, Berbel A, Ali L, Gohari G, Millán T, Madueño F. Genetic control of inflorescence architecture in legumes. Front Plant Sci. 2015;6:543. https://doi.org/10.3389/fpls.2015.00543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avila CM, Atienza SG, Moreno MT, Torres AM. Development of a new diagnostic marker for growth habit selection in faba bean (Vicia faba L.) breeding. Theor Appl Genet. 2007;115:1075. https://doi.org/10.1007/s00122-007-0633-y.

    Article 
    PubMed 

    Google Scholar
     

  • Östberg J. (2021) Vicia faba determinate and indeterminate inflorescence genotypes – comparison of genetic variation at TFL1 locus. In: Independent Project in Biology: Swedish University of Agricultural Sciences, Alnarp, Sweden, p. 64. https://stud.epsilon.slu.se/16453/1/Ostberg_J_210215.pdf. Accessed 28 July 2024.

  • Sallam A, Amro A, Mourad AMI, Rafeek A, Boerner A, Eltaher S. Molecular genetic diversity and linkage disequilibrium structure of the Egyptian faba bean using single primer enrichment technology (SPET). BMC Genom. 2024;25:644. https://doi.org/10.1186/s12864-024-10245-x.

    Article 

    Google Scholar
     

  • Skovbjerg CK, Angra D, Robertson-Shersby-Harvie T, Kreplak J, Ecke W, Windhorst A, Kærgaard Nielsen L, Schiemann A, Knudsen J, Gutierrez N, Tagkouli V, Fechete LI, Janss L, Stougaard J, Warsame A, Alves S, Khazaei H, Link W, Torres AM, O’Sullivan DM, Andersen SU. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. Theor Appl Genet. 2023;136:114. https://doi.org/10.1007/s00122-023-04360-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Liu Y, Zong X, Teng C, Hou W, Li P, Du D. Genetic diversity of global faba bean germplasm resources based on the 130K TNGS genotyping platform. Agronomy. 2023;13:811. https://doi.org/10.3390/agronomy13030811.

    Article 

    Google Scholar
     

  • Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Edit. 2023;5:1272678. https://doi.org/10.3389/fgeed.2023.1272678.

    Article 

    Google Scholar
     

  • Schulman AH, Oksman-Caldentey K-M, Teeri TH. European Court of Justice delivers no justice to Europe on genome-edited crops. Plant Biotechnol J. 2020;18:8–10. https://doi.org/10.1111/pbi.13200.

    Article 
    PubMed 

    Google Scholar
     



  • Source link