Scientific Papers

Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington’s disease mice | Translational Neurodegeneration


  • MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83.

    Article 

    Google Scholar
     

  • Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17(10):729–50.

    Article 
    PubMed 

    Google Scholar
     

  • Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat. 2004;27(3):143–64.

    Article 
    PubMed 

    Google Scholar
     

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience. 2000;97(3):505–19.

    Article 
    PubMed 

    Google Scholar
     

  • Cudkowicz M, Kowall NW. Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol. 1990;27(2):200–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hedreen JC, Peyser CE, Folstein SE, Ross CA. Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett. 1991;133(2):257–61.

    Article 
    PubMed 

    Google Scholar
     

  • Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, Gangnus D, et al. Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol. 1994;88(4):320–33.

    Article 
    PubMed 

    Google Scholar
     

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44(6):559–77.

    Article 
    PubMed 

    Google Scholar
     

  • Singh-Bains MK, Tippett LJ, Hogg VM, Synek BJ, Roxburgh RH, Waldvogel HJ, et al. Globus pallidus degeneration and clinicopathological features of Huntington disease. Ann Neurol. 2016;80(2):185–201.

    Article 
    PubMed 

    Google Scholar
     

  • Liu CF, Younes L, Tong XJ, Hinkle JT, Wang M, Phatak S, et al. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington’s disease. Brain Commun. 2023;5(5):fcad214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, et al. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci Transl Med. 2018;10(461):eaar3959.

    Article 
    PubMed 

    Google Scholar
     

  • Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, et al. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res. 2020;48(1):36–54.

    PubMed 

    Google Scholar
     

  • Wave Life Sciences Ltd. “Safety and Tolerability of WVE-120101 in Patients With Huntington’s Disease (PRECISION-HD1)”. NCT03225833, 2017.

  • Wave Life Sciences Ltd. “Safety and Tolerability of WVE-120102 in Patients With Huntington’s Disease (PRECISION-HD2)”. NCT03225846, 2017.

  • Wave Life Sciences Ltd. “Study of WVE-003 in Patients With Huntington’s Disease”. NCT05032196, 2021.

  • Hoffmann-La Roche “GENERATION HD2. A Study to Evaluate the Safety, Biomarkers, and Efficacy of Tominersen Compared With Placebo in Participants With Prodromal and Early Manifest Huntington’s Disease”. NCT05686551, 2023.

  • Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med. 2019;380(24):2307–16.

    Article 
    PubMed 

    Google Scholar
     

  • McColgan P, Thobhani A, Boak L, Schobel SA, Nicotra A, Palermo G, et al. Tominersen in adults with manifest Huntington’s disease. N Engl J Med. 2023;389(23):2203–5.

    Article 
    PubMed 

    Google Scholar
     

  • UniQure Biopharma B.V. “Safety and Proof-of-Concept (POC) Study With AMT-130 in Adults With Early Manifest Huntington Disease”. NCT04120493, 2019.

  • UniQure Biopharma B.V. “Safety and Efficacy of AMT-130 in European Adults With Early Manifest Huntington Disease”. NCT05243017, 2022.

  • PTC Therapeutics “A Study to Evaluate the Safety and Efficacy of PTC518 in Participants With Huntington’s Disease (HD)”. NCT05358717, 2022.

  • Novartis Pharmaceuticals “A Dose Range Finding Study With Open-Label Extension to Evaluate the Safety of Oral LMI070/Branaplam in Early Manifest Huntington’s Disease (VIBRANT-HD)”. NCT05111249, 2021.

  • Southwell AL, Smith SE, Davis TR, Caron NS, Villanueva EB, Xie Y, et al. Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep. 2015;5:12166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125(5):1979–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander DC, et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med. 2018;10(458):eaat7108.

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues FB, Byrne LM, Tortelli R, Johnson EB, Wijeratne PA, Arridge M, et al. Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington’s disease. Sci Transl Med. 2020;12(574):eabc2888.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16(8):601–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinescu R, Romer M, Oakes D, Rosengren L, Kieburtz K. Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord. 2009;15(3):245–8.

    Article 
    PubMed 

    Google Scholar
     

  • Johnson EB, Byrne LM, Gregory S, Rodrigues FB, Blennow K, Durr A, et al. Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology. 2018;90(8):e717–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, et al. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun. 2022;4(6):fcac309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XY, Bao YF, Xie JJ, Gao B, Qian SX, Dong Y, et al. Application value of serum neurofilament light protein for disease staging in Huntington’s disease. Mov Disord. 2023;38(7):1307–15.

    Article 
    PubMed 

    Google Scholar
     

  • Niemela V, Landtblom AM, Nyholm D, Kneider M, Constantinescu R, Paucar M, et al. Proenkephalin decreases in cerebrospinal fluid with symptom progression of Huntington’s disease. Mov Disord. 2021;36(2):481–91.

    Article 
    PubMed 

    Google Scholar
     

  • Al Shweiki MR, Oeckl P, Pachollek A, Steinacker P, Barschke P, Halbgebauer S, et al. Cerebrospinal fluid levels of prodynorphin-derived peptides are decreased in Huntington’s disease. Mov Disord. 2021;36(2):492–7.

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, et al. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem. 2016;139(1):22–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinescu R, Romer M, Zetterberg H, Rosengren L, Kieburtz K. Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord. 2011;17(9):714–5.

    Article 
    PubMed 

    Google Scholar
     

  • Niemela V, Landtblom AM, Blennow K, Sundblom J. Tau or neurofilament light-Which is the more suitable biomarker for Huntington’s disease? PLoS ONE. 2017;12(2): e0172762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H, et al. Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS ONE. 2016;11(9): e0163479.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemela V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J. Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS ONE. 2018;13(2): e0193492.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233(1–2):183–98.

    Article 
    PubMed 

    Google Scholar
     

  • Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S, Parker C, et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol. 2020;19(6):502–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coarelli G, Darios F, Petit E, Dorgham K, Adanyeguh I, Petit E, et al. Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. Neurobiol Dis. 2021;153: 105311.

    Article 
    PubMed 

    Google Scholar
     

  • Li QF, Dong Y, Yang L, Xie JJ, Ma Y, Du YC, et al. Neurofilament light chain is a promising serum biomarker in spinocerebellar ataxia type 3. Mol Neurodegener. 2019;14(1):39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Shao YR, Li XY, Ma Y, Dong Y, Wu ZY. Association of the level of neurofilament light with disease severity in patients with spinocerebellar ataxia type 2. Neurology. 2021;97(24):e2404–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsson B, Alberg L, Cullen NC, Michael E, Wahlgren L, Kroksmark AK, et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol. 2019;266(9):2129–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaiani A, Martinelli I, Bello L, Querin G, Puthenparampil M, Ruggero S, et al. Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of disease. JAMA Neurol. 2017;74(5):525–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poesen K, De Schaepdryver M, Stubendorff B, Gille B, Muckova P, Wendler S, et al. Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology. 2017;88(24):2302–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lin CH, Li CH, Yang KC, Lin FJ, Wu CC, Chieh JJ, et al. Blood NfL: A biomarker for disease severity and progression in Parkinson disease. Neurology. 2019;93(11):e1104–11.

    Article 
    PubMed 

    Google Scholar
     

  • Mollenhauer B, Dakna M, Kruse N, Galasko D, Foroud T, Zetterberg H, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson’s disease progression. Mov Disord. 2020;35(11):1999–2008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging I. Association of Plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, et al. CSF neurofilament light chain levels in primary progressive MS: signs of axonal neurodegeneration. Front Neurol. 2018;9:1037.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhle J, Nourbakhsh B, Grant D, Morant S, Barro C, Yaldizli O, et al. Serum neurofilament is associated with progression of brain atrophy and disability in early MS. Neurology. 2017;88(9):826–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;64(3):402–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norgren N, Sundstrom P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology. 2004;63(9):1586–90.

    Article 
    PubMed 

    Google Scholar
     

  • Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72(15):1322–9.

    Article 
    PubMed 

    Google Scholar
     

  • Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88(19):1788–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahim P, Gren M, Liman V, Andreasson U, Norgren N, Tegner Y, et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016;6:36791.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Nimer F, Thelin E, Nystrom H, Dring AM, Svenningsson A, Piehl F, et al. Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS ONE. 2015;10(7): e0132177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: A cross-sectional study. EBioMedicine. 2016;3:135–40.

    Article 
    PubMed 

    Google Scholar
     

  • Soylu-Kucharz R, Sandelius A, Sjogren M, Blennow K, Wild EJ, Zetterberg H, et al. Neurofilament light protein in CSF and blood is associated with neurodegeneration and disease severity in Huntington’s disease R6/2 mice. Sci Rep. 2017;7(1):14114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron NS, Banos R, Yanick C, Aly AE, Byrne LM, Smith ED, et al. Mutant huntingtin is cleared from the brain via active mechanisms in Huntington disease. J Neurosci. 2020;41(4):780–96.

    Article 
    PubMed 

    Google Scholar
     

  • Bondulich MK, Phillips J, Canibano-Pico M, Nita IM, Byrne LM, Wild EJ, et al. Translatable plasma and CSF biomarkers for use in mouse models of Huntington’s disease. Brain Commun. 2024;6(1):fcae030.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Axelsson M, Malmestrom C, Gunnarsson M, Zetterberg H, Sundstrom P, Lycke J, et al. Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult Scler. 2014;20(1):43–50.

    Article 
    PubMed 

    Google Scholar
     

  • Gunnarsson M, Malmestrom C, Axelsson M, Sundstrom P, Dahle C, Vrethem M, et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69(1):83–9.

    Article 
    PubMed 

    Google Scholar
     

  • Novakova L, Zetterberg H, Sundstrom P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology. 2015;84(16):1639–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmestrom C, et al. Cerebrospinal fluid biomarkers of inflammation and degeneration as measures of fingolimod efficacy in multiple sclerosis. Mult Scler. 2017;23(1):62–71.

    Article 
    PubMed 

    Google Scholar
     

  • Romme Christensen J, Ratzer R, Bornsen L, Lyksborg M, Garde E, Dyrby TB, et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology. 2014;82(17):1499–507.

    Article 
    PubMed 

    Google Scholar
     

  • Winter B, Guenther R, Ludolph AC, Hermann A, Otto M, Wurster CD. Neurofilaments and tau in CSF in an infant with SMA type 1 treated with nusinersen. J Neurol Neurosurg Psychiatry. 2019;90(9):1068–9.

    Article 
    PubMed 

    Google Scholar
     

  • Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–110.

    Article 
    PubMed 

    Google Scholar
     

  • Hoffmann-La Roche “A Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of RO7234292 (ISIS 443139) in Huntington’s Disease Patients Who Participated in Prior Investigational Studies of RO7234292 (ISIS 443139)”. NCT03342053, 2018.

  • Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12(13):1555–67.

    Article 
    PubMed 

    Google Scholar
     

  • Petrella LI, Castelhano JM, Ribeiro M, Sereno JV, Goncalves SI, Laco MN, et al. A whole brain longitudinal study in the YAC128 mouse model of Huntington’s disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Hum Mol Genet. 2018;27(12):2125–37.

    Article 
    PubMed 

    Google Scholar
     

  • Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, et al. Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis. 2011;43(1):257–65.

    Article 
    PubMed 

    Google Scholar
     

  • Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci. 2005;25(16):4169–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pouladi MA, Stanek LM, Xie Y, Franciosi S, Southwell AL, Deng Y, et al. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet. 2012;21(10):2219–32.

    Article 
    PubMed 

    Google Scholar
     

  • Brooks S, Higgs G, Janghra N, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington’s disease transgenic mice. Brain Res Bull. 2012;88(2–3):113–20.

    Article 
    PubMed 

    Google Scholar
     

  • Van Raamsdonk JM, Pearson J, Murphy Z, Hayden MR, Leavitt BR. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. BMC Neurosci. 2006;7:80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron NS, Banos R, Aly AE, Xie Y, Ko S, Potluri N, et al. Cerebrospinal fluid mutant huntingtin is a biomarker for huntingtin lowering in the striatum of Huntington disease mice. Neurobiol Dis. 2022;166: 105652.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci U S A. 1999;96(15):8727–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron NS, Anderson C, Black HF, Sanders SS, Lemarie FL, Doty CN, et al. Reliable resolution of full-length huntingtin alleles by quantitative immunoblotting. J Huntingtons Dis. 2021;10:355–65.

    Article 
    PubMed 

    Google Scholar
     

  • Reindl W, Baldo B, Schulz J, Janack I, Lindner I, Kleinschmidt M, et al. Meso scale discovery-based assays for the detection of aggregated huntingtin. PLoS ONE. 2019;14(3): e0213521.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2020.

  • Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.

    Article 

    Google Scholar
     

  • Boegman RJ, el-Defrawy SR, Jhamandas K, Beninger RJ, Ludwin SK. Quinolinic acid neurotoxicity in the nucleus basalis antagonized by kynurenic acid. Neurobiol Aging. 1985;6(4):331–6.

    Article 
    PubMed 

    Google Scholar
     

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990–3.

    Article 
    PubMed 

    Google Scholar
     

  • Hoffmann-La Roche “A Study to Evaluate the Efficacy and Safety of Intrathecally Administered RO7234292 (RG6042) in Participants With Manifest Huntington’s Disease”. NCT03761849, 2019.

  • Ionis Pharmaceuticals, Inc. “Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ISIS 443139 in Participants With Early Manifest Huntington’s Disease”. NCT02519036, 2015.

  • Khalil M, Pirpamer L, Hofer E, Voortman MM, Barro C, Leppert D, et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat Commun. 2020;11(1):812.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11.

    Article 

    Google Scholar
     

  • Schwarcz R, Whetsell WO Jr, Mangano RM. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983;219(4582):316–8.

    Article 
    PubMed 

    Google Scholar
     

  • Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32.

    Article 
    PubMed 

    Google Scholar
     

  • Mortberg MA, Gentile JE, Nadaf NM, Vanderburg C, Simmons S, Dubinsky D, et al. A single-cell map of antisense oligonucleotide activity in the brain. Nucleic Acids Res. 2023;51(14):7109–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron NS, Aly AE, Black HF, Martin DDO, Schmidt ME, Ko S, et al. Systemic delivery of mutant huntingtin lowering antisense oligonucleotides to the brain using apolipoprotein A-I nanodisks for Huntington disease. J Control Release. 2024;367:27–44.

    Article 
    PubMed 

    Google Scholar
     

  • Wu TT, Su FJ, Feng YQ, Liu B, Li MY, Liang FY, et al. Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. Stem Cells. 2020;38(2):218–30.

    Article 
    PubMed 

    Google Scholar
     

  • Li XY, Xie JJ, Wang JH, Bao YF, Dong Y, Gao B, et al. Perivascular spaces relate to the course and cognition of Huntington’s disease. Transl Neurodegener. 2023;12(1):30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol. 2020;87(3):357–69.

    Article 
    PubMed 

    Google Scholar
     

  • Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotowska-Zimmer A, Przybyl L, Pewinska M, Suszynska-Zajczyk J, Wronka D, Figiel M, et al. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington’s disease. Mol Ther Nucleic Acids. 2022;28:702–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miniarikova J, Zimmer V, Martier R, Brouwers CC, Pythoud C, Richetin K, et al. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther. 2017;24(10):630–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT, Carroll JB, et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther. 2014;22(12):2093–106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link