Scientific Papers

Engineering of Aspergillus niger for efficient production of d-xylitol from l-arabinose | Microbial Cell Factories


  • FOA (2023): Sugar beet production. Unter Mitarbeit von Food and Agriculture Organization of the United Nations. Hg. v. Food and Agriculture Organization of the United Nations. https://ourworldindata.org/grapher/sugar-beet-production.

  • Usmani Z, Sharma M, Diwan D, Tripathi M, Whale E, Jayakody LN, et al. Valorization of sugar beet pulp to value-added products: a review. Biores Technol. 2022;346:126580. https://doi.org/10.1016/j.biortech.2021.126580.

    Article 
    CAS 

    Google Scholar
     

  • Tomaszewska J, Bieliński D, Binczarski M, Berlowska J, Dziugan P, Piotrowski J, et al. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. Royal Soc Chem Adv. 2018;8(6):3161–77. https://doi.org/10.1039/C7RA12782K.

    Article 
    CAS 

    Google Scholar
     

  • Duraisam R, Salelgn K, Berekete AK. Production of beet sugar and bio-ethanol from sugar beet and it bagasse: A review. Int J Eng Trends Technol. 2017;43(4):222–33. https://doi.org/10.14445/22315381/ijett-v43p237.

    Article 

    Google Scholar
     

  • Kühnel S, Schols HA, Gruppen H. Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol Biofuels. 2011;4(1):S14. https://doi.org/10.1186/1754-6834-4-14.

    Article 
    CAS 

    Google Scholar
     

  • Amoah J, Kahar P, Ogino C, Kondo A. Bioenergy and biorefinery: feedstock, biotechnological conversion, and products. Biotechnol J. 2019;14(6):e1800494. https://doi.org/10.1002/biot.201800494.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar K, Singh E, Shrivastava S. Microbial xylitol production. Appl Microbiol Biotechnol. 2022;106(3):971–9. https://doi.org/10.1007/s00253-022-11793-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mussatto, Solange Inês (2012): Application of xylitol in food formulations and benefits for health. In: Silvio Silvério Da Silva und Anuj Kumar Chandel (Hg.): D-Xylitol. Fermentative production, application and commercialization. Berlin, Heidelberg: Springer Berlin Heidelberg; Imprint; Springer, S. 309–323. Online verfügbar unter https://doi.org/10.1007/978-3-642-31887-0_14.

  • Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, et al. Health benefits of xylitol. Appl Microbiol Biotechnol. 2020;104(17):7225–37. https://doi.org/10.1007/s00253-020-10708-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathur S, Kumar D, Kumar V, Dantas A, Verma R, Kuca K. Xylitol: production strategies with emphasis on biotechnological approach, scale up, and market trends. Sustain Chem Pharm. 2023;35:101203. https://doi.org/10.1016/j.scp.2023.101203.

    Article 
    CAS 

    Google Scholar
     

  • Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MD. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critic Rev Biotechnol. 2019;39(7):924–43. https://doi.org/10.1080/07388551.2019.1640658.

    Article 
    CAS 

    Google Scholar
     

  • Arcaño YD, García OD, Mandelli D, Carvalho WA, Pontes LA. Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today. 2020;344:2–14. https://doi.org/10.1016/j.cattod.2018.07.060.

    Article 
    CAS 

    Google Scholar
     

  • Hou-Rui Z (2012): Key drivers influencing the large scale production of xylitol. In: Silvio Silvério Da Silva und Anuj Kumar Chandel (Hg.): D-Xylitol. Fermentative production, application and commercialization. Berlin, Heidelberg: Springer Berlin Heidelberg; Imprint; Springer, S. 267–289. https://doi.org/10.1007/978-3-642-31887-0_12.

  • Regmi P, Knesebeck M, Boles E, Weuster-Botz D, Oreb M. A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: production of d-xylitol from d-xylose as a case study. Metabol Eng Commun. 2024;19:e00245. https://doi.org/10.1016/j.mec.2024.e00245.

    Article 
    CAS 

    Google Scholar
     

  • Hong Y, Dashtban M, Kepka G, Chen S, Qin W. Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed J Res Int. 2014. https://doi.org/10.1155/2014/169705.

    Article 

    Google Scholar
     

  • Mahmud A, Hattori K, Hongwen C, Kitamoto N, Suzuki T, Nakamura K, Takamizawa K. Xylitol production by NAD(+)-dependent xylitol dehydrogenase (xdhA)- and l-arabitol-4-dehydrogenase (ladA)-disrupted mutants of Aspergillus oryzae. J Biosci Bioeng. 2013;115(4):353–9. https://doi.org/10.1016/j.jbiosc.2012.10.017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mäkelä MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol. 2014. https://doi.org/10.1016/j.fgb.2014.08.010.

    Article 
    PubMed 

    Google Scholar
     

  • Baker SE. Aspergillus niger genomics: past, present and into the future. J Med Mycol. 2006;44(1):S17-21. https://doi.org/10.1080/13693780600921037.

    Article 
    CAS 

    Google Scholar
     

  • Meyer V. Metabolic engineering of filamentous fungi. In: Meyer V, editor. Metabolic engineering. Hoboken: John Wiley & Sons, Ltd; 2021.


    Google Scholar
     

  • Chroumpi T, Peng M, Markillie LM, Mitchell HD, Nicora CD, Hutchinson CM, Chelsea M, et al. Re-routing of sugar catabolism provides a better insight into fungal flexibility in using plant biomass-derived monomers as substrates. Front Bioeng Biotechnol. 2021;9:644216. https://doi.org/10.3389/fbioe.2021.644216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng J, Chroumpi T, Mäkelä MR, de Vries RP. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. Biores Technol. 2022;344:126199. https://doi.org/10.1016/j.biortech.2021.126199.

    Article 
    CAS 

    Google Scholar
     

  • Witteveen CF, Busink R, Van de Vondervoort P, Dijkema C, Swart K, Visser J. L-arabinose and D-xylose catabolism in Aspergillus niger. Microbiology. 1989;135(8):2163–71. https://doi.org/10.1099/00221287-135-8-2163.

    Article 
    CAS 

    Google Scholar
     

  • Arentshorst M, Ram AF, Meyer V. Using non-homologous end-joining-deficient strains for functional gene analyses in filamentous fungi. Methods Mol Biol. 2012;835:133–50. https://doi.org/10.1007/978-1-61779-501-5_9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd edition (Vol. 1). 2021.

  • Tamás MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, et al. A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem. 2003;278(8):6337–45. https://doi.org/10.1074/jbc.M209792200.

    Article 
    PubMed 

    Google Scholar
     

  • Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M. Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol. 2013;97(1):259–67. https://doi.org/10.1007/s00253-012-4207-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Y, Zheng X, Wang Y, Zhang L, Wang L, Lei Y, et al. Evaluation of Aspergillus niger six constitutive strong promoters by fluorescent-auxotrophic selection coupled with flow cytometry: a case for citric acid production. J Fungi. 2022. https://doi.org/10.3390/jof8060568.

    Article 

    Google Scholar
     

  • Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RD, Pouwels PH, van den Hondel CA. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene. 1990;93(1):101–9. https://doi.org/10.1016/0378-1119(90)90142-e.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cesbron F, Brunner M, Diernfellner AC. Light-dependent and circadian transcription dynamics in vivo recorded with a destabilized luciferase reporter in Neurospora. Public LibSci One. 2013;8(12):e83660.

    Article 

    Google Scholar
     

  • Leskinen P, Virta M, Karp M. One-step measurement of firefly luciferase activity in yeast. Yeast. 2003;20(13):1109–13. https://doi.org/10.1002/yea.1024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell. 2008;7(1):28–37. https://doi.org/10.1128/EC.00257-07.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee ME, DeLoache WC, Cervantes B, Dueber JE. A highly characterized yeast toolkit for modular, multipart assembly. Am Chem Soc Syn Biol. 2015;4(9):975–86. https://doi.org/10.1021/sb500366v.

    Article 
    CAS 

    Google Scholar
     

  • Knesebeck M, Schäfer D, Schmitz K, Rüllke M, Benz JP, Weuster-Botz D. Enzymatic one-pot hydrolysis of extracted sugar beet press pulp after solid-state Fermentation with an Engineered Aspergillus niger Strain. Fermentation. 2023;9(7):582. https://doi.org/10.3390/fermentation9070582.

    Article 
    CAS 

    Google Scholar
     

  • Leynaud-Kieffer LM, Curran SC, Kim I, Magnuson JK, Gladden JM, Baker SE, Simmons BA. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. Pub Lib Sci One. 2019;14(1):e0210243. https://doi.org/10.1371/journal.pone.0210243.

    Article 
    CAS 

    Google Scholar
     

  • Rüllke M, Meyer F, Schmitz K, Blase H, Tamayo E, Benz JP. A novel luciferase-based reporter tool to monitor the dynamics of carbon catabolite repression in filamentous fungi. Microbial Biotechnol. 2024. https://doi.org/10.1111/1751-7915.70012.

  • Niu J, Arentshorst M, Seelinger F, Ram AF, Ouedraogo JP. A set of isogenic auxotrophic strains for constructing multiple gene deletion mutants and parasexual crossings in Aspergillus niger. Archiv Microbiol. 2016;198(9):861–8. https://doi.org/10.1007/s00203-016-1240-6.

    Article 
    CAS 

    Google Scholar
     

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol. 2007;128(4):770–5. https://doi.org/10.1016/j.jbiotec.2006.12.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer V, Wu B, Ram AF. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett. 2011;33(3):469–76. https://doi.org/10.1007/s10529-010-0473-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamás MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol. 1999;31(4):1087–104. https://doi.org/10.1046/j.1365-2958.1999.01248.x.

    Article 
    PubMed 

    Google Scholar
     

  • Wei N, Xu H, Kim SR, Jin YS. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbiol. 2013;79(10):3193–201. https://doi.org/10.1128/AEM.00490-13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunayevich P, Baltanás R, Clemente JA, Couto A, Sapochnik D, Vasen G, Colman-Lerner A. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 2018;8(1):15168. https://doi.org/10.1038/s41598-018-33203-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Yan JN, Zhang H, Liu TQ, Xu Y, Zhang YY, Li J. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in Aspergillus niger. Fed Eur Biochem Soc Lett. 2018. https://doi.org/10.1093/femsle/fny154.

    Article 

    Google Scholar
     

  • Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon catabolite repression in filamentous fungi. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms19010048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62(2):334–61. https://doi.org/10.1128/MMBR.62.2.334-361.1998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruijter GJ, Visser J. Carbon repression in Aspergilli. Fed Eur Biochem Soc Lett. 1997;151(2):103–14. https://doi.org/10.1111/j.1574-6968.1997.tb12557.x.

    Article 
    CAS 

    Google Scholar
     

  • Dowzer CE, Kelly JM. Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet. 1989;15(6):457–9. https://doi.org/10.1007/BF00376804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mäkelä MR, Aguilar-Pontes MV, van Rossen-Uffink D, Peng M, de Vries RP. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Sci Rep. 2018;8(1):6655. https://doi.org/10.1038/s41598-018-25152-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruijter GJ, Vanhanen SA, Gielkens MM, van de Vondervoort PJ, Visser J. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. Microbiology. 1997;143(Pt9):2991–8. https://doi.org/10.1099/00221287-143-9-2991.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schäfer D, Schmitz K, Weuster-Botz D, Benz JP. Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for D-galacturonic acid production. Bioproc Biosyst Eng. 2020;43(9):1549–60. https://doi.org/10.1007/s00449-020-02347-z.

    Article 
    CAS 

    Google Scholar
     

  • Rutten L, Ribot C, Trejo-Aguilar B, Wösten HA, de Vries RP. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol. Biomed Central Microbiol. 2009;9:166. https://doi.org/10.1186/1471-2180-9-166.

    Article 
    CAS 

    Google Scholar
     

  • Koivistoinen OM, Richard P, Penttilä M, Ruohonen L, Mojzita D. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism. Fed Eur Biochem Soc Lett. 2012;586(4):378–83. https://doi.org/10.1016/j.febslet.2012.01.004.

    Article 
    CAS 

    Google Scholar
     

  • Karlgren S, Pettersson N, Nordlander B, Mathai JC, Brodsky JL, Zeidel ML, et al. Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J Biol Chem. 2005;280(8):7186–93. https://doi.org/10.1074/jbc.M413210200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, et al. MAPK Hog1 closes the S cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev. 2013;27(23):2590–601. https://doi.org/10.1101/gad.229310.113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Groot MJ, Van Den Dool C, Wösten HA, Levisson M, VanKuyk PA, Ruijter GJ, De Vries RP. Regulation of pentose catabolic pathway genes of Aspergillus niger. Food Technol Biotechnol. 2007;45(2):134–8.


    Google Scholar
     

  • Mert HH, Dizbay M. The effect of osmotic pressure and salinity of the medium on the growth and sporulation of Aspergillus niger and Paecilomyces lilacinum species. Mycopathologia. 1977;61(2):125–7. https://doi.org/10.1007/BF00443842.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beever RE, Laracy EP. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol. 1986;168(3):1358–65. https://doi.org/10.1128/jb.168.3.1358-1365.1986.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ianutsevich EA, Tereshina VM. Combinatorial impact of osmotic and heat shocks on the composition of membrane lipids and osmolytes in Aspergillus niger. Microbiology. 2019;165(5):554–62. https://doi.org/10.1099/mic.0.000796.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulsen RB, Nøhr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. Fed Eur Biochem Soc J. 2005;272(6):1313–25. https://doi.org/10.1111/j.1742-4658.2005.04554.x.

    Article 
    CAS 

    Google Scholar
     

  • Shroff RA, Lockington RA, Kelly JM. Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol. 1996;42(9):950–9. https://doi.org/10.1139/m96-122.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saha BC, Kennedy GJ. Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. Biocatal Agricult Biotechnol. 2020;29:101786. https://doi.org/10.1016/j.bcab.2020.101786.

    Article 

    Google Scholar
     

  • Sakakibara Y, Saha BC, Taylor P. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng. 2009;107(5):506–11. https://doi.org/10.1016/j.jbiosc.2008.12.017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon BH, Jeon WY, Shim WY, Kim JH. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis. Biotechnol Lett. 2011;33(4):747–53. https://doi.org/10.1007/s10529-010-0487-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link