Scientific Papers

The mitochondrial genome of Lavandula angustifolia Mill. (Lamiaceae) sheds light on its genome structure and gene transfer between organelles | BMC Genomics


  • POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/. 2023.

  • Salehi B, Mnayer D, Özçelik B, Altin G, Kasapoǧlu KN, Daskaya-Dikmen C, et al. Plants of the genus Lavandula: from farm to pharmacy. Nat Prod Commun. 2018;13:1385–402.


    Google Scholar
     

  • Guo X, Wang P. Aroma characteristics of lavender extract and essential oil from Lavandula angustifolia mill. Molecules. 2020;25:1–14.

    Article 

    Google Scholar
     

  • Lesage-Meessen L, Bou M, Sigoillot JC, Faulds CB, Lomascolo A. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. Appl Microbiol Biotechnol. 2015;99:3375–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells R, Truong F, Adal AM, Sarker LS, Mahmoud SS. Lavandula essential oils: a current review of applications in medicinal, food, and cosmetic industries of lavender. Nat Prod Commun. 2018;13:1403–17.


    Google Scholar
     

  • Farrar AJ, Farrar FC. Clinical aromatherapy. Nurs Clin North Am. 2020;55:489–504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Héral B, Stierlin É, Fernandez X, Michel T. Phytochemicals from the genus Lavandula: a review. Phytochem Rev. 2021;20:751–71.

    Article 

    Google Scholar
     

  • Cavanagh HMA, Wilkinson JM. Lavender essential oil: a review. Aust Infect Control. 2005;10:35–7.

    Article 

    Google Scholar
     

  • Dakhlaoui S, Wannes WA, Sari H, Hmida M, Ben, Frouja O, Limam H, et al. Combined effect of essential oils from lavender (Lavandula officinalis L.) Aerial Parts and Coriander (Coriandrum sativum L.) seeds on Antioxidant, Anti-diabetic, anti-cancer and anti-inflammatory activities. J Essent Oil-Bearing Plants. 2022;25:188–99.

    Article 
    CAS 

    Google Scholar
     

  • Evandri MG, Battinelli L, Daniele C, Mastrangelo S, Bolle P, Mazzanti G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem Toxicol. 2005;43:1381–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Chen R, Wang Y, Qing C, Wang W, Yang Y. In Vitro and in vivo efficacy studies of lavender angustifolia essential oil and its active constituents on the proliferation of human prostate Cancer. Integr Cancer Ther. 2017;16:215–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Wang Y, Dong Y, Zhang W, Wang D, Bai H et al. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Hortic Res. 2021;8:30.

  • Malli RPN, Adal AM, Sarker LS, Liang P, Mahmoud SS. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta. 2019;249:251–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L. The complete chloroplast genome sequence of the fragrant plant Lavandula angustifolia (Lamiaceae). Mitochondrial DNA Part B Resour. 2018;3:135–6.

    Article 

    Google Scholar
     

  • Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol. 2021;19:1–27.

    Article 
    CAS 

    Google Scholar
     

  • Li P, Qi ZC, Liu LX, Ohi-Toma T, Lee J, Hsieh TH, et al. Molecular phylogenetics and biogeography of the mint tribe Elsholtzieae (Nepetoideae, Lamiaceae), with an emphasis on its diversification in East Asia. Sci Rep. 2017;7:1–12.


    Google Scholar
     

  • Timmis JN, Ayliff MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5:123–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, et al. Plant mitochondrial genome evolution and cytoplasmic male sterility. CRC Crit Rev Plant Sci. 2017;36:55–69.

    Article 
    CAS 

    Google Scholar
     

  • Yang Z, Ni Y, Lin Z, Yang L, Chen G, Nijiati N, et al. De novo assembly of the complete mitochondrial genome of sweet potato (Ipomoea batatas [L.] Lam) revealed the existence of homologous conformations generated by the repeat-mediated recombination. BMC Plant Biol. 2022;22:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Gualberto JM, Newton KJ. Plant mitochondrial genomes: Dynamics and mechanisms of Mutation. Annu Rev Plant Biol. 2017;68 February:225–52.

    Article 

    Google Scholar
     

  • Sloan DB. One ring to rule them all? Genome sequencing provides new insights into the master circle model of plant mitochondrial DNA structure. New Phytol. 2013;200:978–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JX, Dierckxsens N, Bai MZ, Guo YY. Multichromosomal mitochondrial genome of Paphiopedilum micranthum: Compact and Fragmented Genome, and rampant intracellular gene transfer. Int J Mol Sci. 2023;24:1234.

  • Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, et al. The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLOS Genet. 2019;15:e1008373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong S, Zhao C, Chen F, Liu Y, Zhang S, Wu H, et al. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics. 2018;19:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10:e1001241.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn EL, Christensen AC. Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3 genes. Genomes Genet. 2019;9:549–59.

    CAS 

    Google Scholar
     

  • Stern DB, Palmer JD. Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res. 1984;12:6141–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, Mower JP, et al. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytol. 2015;208:570–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Sci (80-). 2013;342:1468–73.

    Article 
    CAS 

    Google Scholar
     

  • Raman G, Lee EM, Park SJ. Intracellular gene transfer events restricted to the genus Convallaria within the Asparagaceae family: possible mechanisms and potential as genetic markers for biographical studies. Genomics. 2021;113:2906–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao N, Wang Y, Hua J. The roles of mitochondrion in intergenomic gene transfer in plants: a source and a pool. Int J Mol Sci. 2018;19:1234.

  • Bi C, Lu N, Xu Y, He C, Lu Z. Characterization and analysis of the mitochondrial genome of common bean (Phaseolus vulgaris) by comparative genomic approaches. Int J Mol Sci. 2020;21:1–20.

    Article 

    Google Scholar
     

  • Yang H, Chen H, Ni Y, Li J, Cai Y, Ma B, et al. De Novo Hybrid Assembly of the Salvia miltiorrhiza mitochondrial genome provides the first evidence of the multi-chromosomal mitochondrial DNA structure of Salvia Species. Int J Mol Sci. 2022;23:14267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi C, Qu Y, Hou J, Wu K, Ye N, Yin T. Deciphering the multi-chromosomal mitochondrial genome of Populus simonii. Front Plant Sci. 2022;13:1–14.

    Article 

    Google Scholar
     

  • Xiong Y, Yu Q, Xiong Y, Zhao J, Lei X, Liu L et al. The complete mitogenome of Elymus sibiricus and insights into its evolutionary pattern based on simple repeat sequences of seed plant mitogenomes. Front Plant Sci. 2022;12:123.

  • Huang CY, Ayliffe MA, Timmis JN. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 2003;422:72–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leister D, Kleine T. Role of Intercompartmental DNA Transfer in Producing Genetic Diversity. 1st edition. Elsevier Inc.; 2011.

  • Hao W, Liu G, Wang W, Shen W, Zhao Y, Sun J et al. RNA editing and its roles in Plant Organelles. Front Genet. 2021;12:123.

  • Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci. 2015;112:10177–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sloan DB. Using plants to elucidate the mechanisms of cytonuclear co-evolution. New Phytol. 2015;205:1040–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funk DJ, Omland KE. Species-Level Paraphyly and Polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2003;34:397–423.

    Article 

    Google Scholar
     

  • Turmel M, Otis C, Lemieux C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell. 2003;15:1888–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu D, Qu K, Yuan Y, Zhao Z, Chen Y, Han B, et al. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet. 2023;13:1–15.

    Article 

    Google Scholar
     

  • Mackenzie S, McIntosh L. Higher plant mitochondria. Plant Cell. 1999;11:571–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millar AH, Whelan J, Soole KL, Day DA. Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol. 2011;62:79–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crișan I, Ona A, Vârban D, Muntean L, Vârban R, Stoie A et al. Current trends for lavender (Lavandula angustifolia Mill.) Crops and products with emphasis on essential oil quality. Plants. 2023;12:1234.

  • Tang D, Huang S, Quan C, Huang Y, Miao J, Wei F. Mitochondrial genome characteristics and phylogenetic analysis of the medicinal and edible plant Mesona Chinensis Benth. Front Genet. 2023;13:1–15.

    Article 

    Google Scholar
     

  • Chen H, Liu C. The Chloroplast and mitochondrial genomes of Salvia miltiorrhiza. In: Kole C, editor. The Salvia miltiorrhiza genome. Cham: Springer; 2019. pp. 55–68.

    Chapter 

    Google Scholar
     

  • Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol. 2010;10:84.

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, et al. Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci U S A. 1999;96:13863–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandini CL, Garcia LE, Abbona CC, Ceriotti LF, Kushnir S, Geelen D et al. Break-induced replication is the primary recombination pathway in plant somatic hybrid mitochondria: a model for mt-HGT. J Exp Bot. 2023;74:1234.

  • Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philos Trans R Soc B Biol Sci. 2020;375:20190117.

  • Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S et al. The complete chloroplast and mitochondrial genome sequences of boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS One. 2012;7.

  • Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 2020;101:1040–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knoop V. C-to-U and U-to-C: RNA editing in plant organelles and beyond. J Exp Bot. 2023;74:2273–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlötterer C. The evolution of molecular markers — just a matter of fashion? Nat Rev Genet. 2004;5:63–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yang JN, Seluanov A, Gorbunova V. Mitochondrial inverted repeats strongly correlate with Lifespan: MtDNA inversions and Aging. PLoS One. 2013;8.

  • D’Haeseleer P. What are DNA sequence motifs? Nat Biotechnol. 2006;24:423–5.

    Article 
    PubMed 

    Google Scholar
     

  • Miklenić MS, Svetec IK. Palindromes in dna—a risk for genome stability and implications in cancer. Int J Mol Sci. 2021;22:1–19.


    Google Scholar
     

  • Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19:286–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177:309–34.

    Article 
    CAS 

    Google Scholar
     

  • Smith DR. Can Green Algal Plastid Genome size be explained by DNA repair mechanisms? Genome Biol Evol. 2020;12:3797–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouchier C, Ma L, Créno S, Dujon B, Fairhead C. Complete mitochondrial genome sequences of three Nakaseomyces species reveal invasion by palindromic GC clusters and considerable size expansion. FEMS Yeast Res. 2009;9:1283–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, et al. HiCanu: Accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020;30:1291–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin J-J, Yu W-B, Yang J-B, Song Y, DePamphilis CW, Yi T-S, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick RR, Schultz MB, Zobel J, Holt KE, Bandage. Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq – Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In: Martin K, editor. Gene Prediction: Methods and Protocols, Methods in Molecular Biology. 2019. pp. 1–14.

  • Lohse M, Drechsel O, Kahlau S, Bock R. OrganellarGenomeDRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:575–81. Web Server issue:.

    Article 

    Google Scholar
     

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33:2583–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurka J, Klonowski P, Dagman V, Pelton P. Censor—a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem. 1996;20:119–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jobson RW, Qiu YL. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct. 2008;3:1–22.

    Article 

    Google Scholar
     

  • Gommans WM, Mullen SP, Maas S. RNA editing: a driving force for adaptive evolution? BioEssays. 2009;31:1137–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharp PM, Cowe E. Synonymous codon usage inSaccharomyces Cerevisiae. Yeast. 1991;7:657–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behura SK, Severson DW. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol Rev. 2013;88:49–61.

    Article 
    PubMed 

    Google Scholar
     

  • Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12:32–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant. 2020;13:1194–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20:348–55.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link