Scientific Papers

A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber | Genome Biology


  • Block C, Reitsma K. Powdery mildew resistance in the U.S. national plant germplasm system cucumber collection. Hortscience. 2005;40:414–20.

    Article 

    Google Scholar
     

  • Lebeda A, Mieslerová B. Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathol. 2011;60(3):400–15.

    Article 

    Google Scholar
     

  • Keinath AP, Dubose VB. Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides. Crop Prot. 2012;42:338–44.

    Article 
    CAS 

    Google Scholar
     

  • Hafez YM, Attia KA, Kamel S, Alamery SF, Abdelaal K. Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiol Mol Plant Pathol. 2020;11:101489.

    Article 

    Google Scholar
     

  • Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic Res. 2020;7:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.

    Article 
    CAS 

    Google Scholar
     

  • He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang K, Wang X, Zhu W, Qin X, Xu J, Cheng C, Lou Q, Li J, Chen J. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor Appl Genet. 2018;131:2229–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg JA, Appiano M, Santillán Martínez M, Hermans FW, Vriezen WH, Visser RG, Bai Y, Schouten HJ. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol. 2015;15:243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci. 2015;6:1155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badri Anarjan M, Bae I, Lee S. Marker-assisted evaluation of two powdery mildew resistance candidate genes in Korean cucumber inbred lines. Agronomy. 2021;11:2191.

    Article 
    CAS 

    Google Scholar
     

  • Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ. 2023;46(4):1104–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol. 2018;74:114–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Z, Li W, Liu J, Li L, Pan S, Liu S, Gao J, Liu L, Liu X, Wang GL, Dai L. The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth. Sci Rep. 2019;9:2–11.


    Google Scholar
     

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991;97:1087–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arruda MP, Brown P, Brown-Guedira G, Krill AM, Thurber C, Merrill KR, Foresman BJ, Kolb FL. Genome-wide association mapping of fusarium head blight resistance in wheat using genotyping-by-sequencing. Plant Genome. 2016;9:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 2017;170:114–126.e15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genet. 2019;51:1540–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen B, Zhang Y, Sun Z, Liu Z, Zhang D, Yang J, Wang G, Wu J, Ke H, Meng C, Wu L, Yan Y, Cui Y, Li Z, Wu L, Zhang G, Wang X, Ma Z. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. Plant J. 2021;107:831–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S. Genomic analyses provide insights into the history of tomato breeding. Nature Genet. 2014;46:1220–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J. 2018;16:1546–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J. 2020;18:2545–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genet. 2013;45:1510–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Bao K, Reddy UK, Bai Y, Hammar SA, Jiao C, Wehner TC, Ramírez-Madera AO, Weng Y, Grumet R, Fei Z. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horti Res. 2018;5:64.

    Article 

    Google Scholar
     

  • Lee HY, Kim JG, Kang BC. Assessment of the genetic diversity of the breeding lines and a genome wide association study of three horticultural traits using worldwide cucumber (Cucumis spp.) germplasm collection. Agronomy. 2020;10:1736.

    Article 
    CAS 

    Google Scholar
     

  • Liu M, Liang Z, Aranda MA, Hong N, Liu L, Kang B, Gu Q. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods. 2020;16:9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Liu M, Hu Q, Yan W, Pan J, Yan Y, Chen X. A CsEIL3-CsARN6.1 module promotes waterlogging-triggered adventitious root formation in cucumber by activating the expression of CsPrx5. Plant J. 2023;114(4):824–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, Fan C, Zhou Y. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Plant Biotechnol J. 2020;18:1472–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Innark P, Khanobdee C, Samipak S, Jantasuriyarat C. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Sci Hortic. 2013;162:278–84.

    Article 
    CAS 

    Google Scholar
     

  • Mohler V, Stadlmeier M. Dynamic qtl for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet. 2019;60:291–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro AJ, Chen X, Hayes PM, Knapp SJ, Vivar H. Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci. 2002;42:1701–8.

    Article 
    CAS 

    Google Scholar
     

  • Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3’ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayr C. Regulation by 3’-untranslated regions. Annu Rev Genet. 2017;51:171–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C. The 3’ untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J. 2006;45:832–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin J, Yuan Z, Fordyce K, Sreeramoju P, Kent TS, Kim J, Wang V, Schneyer D, Weber TK. A del T poly T (8) mutation in the 3’ untranslated region (UTR) of the CDK2-AP1 gene is functionally significant causing decreased mRNA stability resulting in decreased CDK2-AP1 expression in human microsatellite unstable (MSI) colorectal cancer (CRC). Surgery. 2007;142:222–7.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in taphs1 for pre-harvest sprouting resistance in wheat. Theor Appl Genet. 2020;134:339–50.

    Article 
    PubMed 

    Google Scholar
     

  • Yang YL, Guo L, Xu SA, Holland CA, Kitamura T, Hunter K, Cunningham JM. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nature Genet. 1999;21:216–9.

    Article 
    PubMed 

    Google Scholar
     

  • Battini JL, Rasko JEJ, Miller AD. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. P Natl Acad Sci USA. 1999;96:1385–90.

    Article 
    CAS 

    Google Scholar
     

  • Wege S, Poirier Y. Expression of the mammalian xenotropic polytropic virus receptor 1 (xpr1) in tobacco leaves leads to phosphate export. FEBS Lett. 2014;588:482–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Dong S, Li M, Gu F, Yang G, Guo T, Chen Z, Wang J. The class III peroxidase gene OsPrx30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. J Integr Plant Biol. 2021;63(2):393–408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Zhang X, Zhao B, Song P, Zhang X, Wang B, Li Q. Wheat class III peroxidase TaPOD70 is a potential susceptibility factor negatively regulating wheat resistance to Blumeria graminis f. sp. tritici. Phytopathology. 2023;113(5):873–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Liu X, Yan Y, Wang W, Gebretsadik K, Qi X, Xu Q, Chen X. Comparative proteomic analysis of cucumber powdery mildew resistance between a single-segment substitution line and its recurrent parent. Hortic Res. 2019;6:115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun M, Jiang F, Cen B, Wen J, Zhou Y, Wu Z. Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant Cell Environ. 2018;41(10):2373–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma B, Suo Y, Zhang J, Xing N, Gao Z, Lin X, Zheng L, Wang Y. Glutaredoxin like protein (RtGRL1) regulates H2O2 and Na+ accumulation by maintaining the glutathione pool during abiotic stress. Plant Physiol Biochem. 2021;159:135–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo SC, Moon BC, Kim JK, Kim CY, Sung SJ, Kim MC, Cho MJ, Cheong YH. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun. 2009;387(2):365–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray M, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–890.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander D, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Dong S, Xu J, He W, Yang T. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics. 2019;35:1786–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen X. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet. 2016;129:507–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler E. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Lee S, Goddard M, Visscher P. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 2014;10:e1004573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner S. Qqman: q-q and manhattan plots for GWAS data. J Open Source Softw. 2018;3:731.

    Article 

    Google Scholar
     

  • Dong S, He W, Ji J, Zhang C, Guo Y, Yang T. Ldblockshow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform. 2020;30:bbaa227.


    Google Scholar
     

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnol. 2019;37(8):907–15.

    Article 
    CAS 

    Google Scholar
     

  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Datasets. Genome Sequence Archive. 2021. https://ngdc.cncb.ac.cn/gsa/browse/CRA002417.

  • Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals the genetic basis of powdery mildew resistance in cucumber. Datasets. Sequence Read Archive. 2023.
    https://www.ncbi.nlm.nih.gov/bioproject/PRJNA998480.

  • Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Github. 2024.
    https://github.com/xiaodongy86/PM_GWAS_Cucumber.

  • Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Zenodo. 2024.
    https://zenodo.org/records/13635209.



  • Source link