Scientific Papers

Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation | Biotechnology for Biofuels and Bioproducts


  • Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6:52–63.

    Article 

    Google Scholar
     

  • Levasseur W, Perre P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv. 2020;41: 107545.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022;49: 101932.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, Wang Z. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr. 2021;9(9):5279–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkia I, Saari N, Manning SR. Microalgae for high-value products towards human health and nutrition. Mar Drugs. 2019;17(5):304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Morais MG, Vaz Bda S, de Morais EG, Costa JA. Biologically active metabolites synthesized by microalgae. Biomed Res Int. 2015;2015: 835761.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stirk WA, van Staden J. Bioprospecting for bioactive compounds in microalgae: antimicrobial compounds. Biotechnol Adv. 2022;59: 107977.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falaise C, François C, Travers MA, Morga B, Haure J, Tremblay R, Turcotte F, Pasetto P, Gastineau R, Hardivillier Y, et al. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar Drugs. 2016;14(9):159.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, Ninova MS, Kussovski VK. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Tech. 2013;48(7):1533–40.

    Article 
    CAS 

    Google Scholar
     

  • Torres-Tiji Y, Fields FJ, Yang Y, Heredia V, Horn SJ, Keremane SR, Jin MM, Mayfield SP. Optimized production of a bioactive human recombinant protein from the microalgae Chlamydomonas reinhardtii grown at high density in a fed-batch bioreactor. Algal Res. 2022;66: 102786.

    Article 

    Google Scholar
     

  • Li S, Ji L, Chen C, Zhao S, Sun M, Gao Z, Wu H, Fan J. Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol. 2020;309: 123362.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JH, Dubey SK, Hwangbo K, Chung BY, Lee SS, Lee S. Application of ionizing radiation as an elicitor to enhance the growth and metabolic activities in Chlamydomonas reinhardtii. Front Plant Sci. 2023;14:1087070.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battah M, El-Ayoty Y, Abomohra AE-F, El-Ghany SA, Esmael A. Effect of Mn2+, CO2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Ann Microbiol. 2015;65(1):155–62.

    Article 
    CAS 

    Google Scholar
     

  • Fields FJ, Ostrand JT, Mayfield SP. Fed-batch mixotrophic cultivation of Chlamydomonas reinhardtii for high-density cultures. Algal Res. 2018;33:109–17.

    Article 

    Google Scholar
     

  • Doron L, Segal N, Shapira M. Transgene expression in microalgae-from tools to applications. Front Plant Sci. 2016;7:505.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res. 2015;123(3):227–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Q, Chen C, Zhang W, Wu P, Sun M, Wu H, Wu H, Fu P, Fan J. Transgenic eukaryotic microalgae as green factories: providing new ideas for the production of biologically active substances. J App Phycol. 2021;33(2):705–28.

    Article 

    Google Scholar
     

  • Ramos-Martinez EM, Fimognari L, Sakuragi Y. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnol J. 2017;15(9):1214–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranjith Kumar R, Hanumantha Rao P, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res. 2015;2:61.

    Article 

    Google Scholar
     

  • Balasubramaniam V, Gunasegavan RD, Mustar S, Lee JC, Mohd Noh MF. Isolation of industrial important bioactive compounds from microalgae. Molecules. 2021;26(4):943.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byun EB, Kim HM, Song HY, Kim WS. Hesperidin structurally modified by gamma irradiation induces apoptosis in murine melanoma B16BL6 cells and inhibits both subcutaneous tumor growth and metastasis in C57BL/6 mice. Food Chem Toxicol. 2019;127:19–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song HY, Kim KI, Han JM, Park WY, Seo HS, Lim S, Byun EB. Ionizing radiation technology to improve the physicochemical and biological properties of natural compounds by molecular modification: a review. Radiat Phys Chem. 2022;194: 110013.

    Article 
    CAS 

    Google Scholar
     

  • Song HY, Kim HM, Mushtaq S, Kim WS, Kim YJ, Lim ST, Byun EB. Gamma-irradiated chrysin improves anticancer activity in HT-29 colon cancer cells through mitochondria-related pathway. J Med Food. 2019;22(7):713–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho BO, Nchang Che D, Yin HH, Jang SI. Enhanced biological activities of gamma-irradiated persimmon leaf extract. J Radiat Res. 2017;58(5):647–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB. The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell. 2002;14(11):2659–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popescu CE, Lee RW. Mitochondrial genome sequence evolution in Chlamydomonas. Genetics. 2007;175(2):819–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318(5848):245–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weeks DP. Chapter 13 – Genetic transformation of Chlamydomonas nuclear, chloroplast, and mitochondrial genomes. In: Goodenough U, editor. The Chlamydomonas sourcebook. 3rd ed. San Diego: Academic Press; 2023. p. 325–43.

    Chapter 

    Google Scholar
     

  • Neupert J, Gallaher SD, Lu Y, Strenkert D, Segal N, Barahimipour R, Fitz-Gibbon ST, Schroda M, Merchant SS, Bock R. An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat Commun. 2020;11(1):6269.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroda M. Good news for nuclear transgene expression in Chlamydomonas. Cells. 2019;8(12):1534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res. 2018;46(13):6909–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 2009;229(4):873–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geisler K, Scaife MA, Mordaka PM, Holzer A, Tomsett EV, Mehrshahi P, Mendoza Ochoa GI, Smith AG. Exploring the impact of terminators on transgene expression in Chlamydomonas reinhardtii with a synthetic biology approach. Life (Basel). 2021;11(9):964.

    CAS 
    PubMed 

    Google Scholar
     

  • Barahimipour R, Strenkert D, Neupert J, Schroda M, Merchant SS, Bock R. Dissecting the contributions of gc content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. 2015;84(4):704–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. Bioresour Bioprocess. 2022;9(1):83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17(1):134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neupert J, Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 2009;57(6):1140–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barahimipour R, Neupert J, Bock R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: Synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol. 2016;90(4–5):403–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong K, Austerlitz T, Bohlmann T, Bohlmann H. The thionin family of antimicrobial peptides. PLoS ONE. 2021;16(7): e0254549.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lincoln JE, Sanchez JP, Zumstein K, Gilchrist DG. Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Mol Plant Pathol. 2018;19(9):2111–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breen S, Williams SJ, Outram M, Kobe B, Solomon PS. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 2017;22(10):871–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain D, Khurana JP. Role of pathogenesis-related (PR) proteins in plant defense mechanism. In: Singh A, Singh IK, editors. Molecular aspects of plant-pathogen interaction. Singapore: Springer; 2018. p. 265–81.

    Chapter 

    Google Scholar
     

  • Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zarate L, Villagomez-Gomez E, Lopez-Meza JE, Ochoa-Zarzosa A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett. 2008;30(10):1713–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohlmann H, Vignutelli A, Hilpert B, Miersch O, Wasternack C, Apel K. Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett. 1998;437(3):281–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995;109(3):813–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauersen KJ, Kruse O, Mussgnug JH. Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol. 2015;99(8):3491–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo KM, Jung S, Kim JB, Kim SH, Kwon SJ, Jeong WJ, Chung GH, Kang SY, Choi Y-E, Ahn JW. Effect of ionizing radiation on the DNA damage response in Chlamydomonas reinhardtii. Genes Genom. 2017;39(1):63–75.

    Article 
    CAS 

    Google Scholar
     

  • Selvaraj MG, Jan A, Ishizaki T, Valencia M, Dedicova B, Maruyama K, Ogata T, Todaka D, Yamaguchi-Shinozaki K, Nakashima K, et al. Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. Plant Biotechnol J. 2020;18(8):1711–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 1999;19(3):353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP. Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. Plant J. 2015;82(4):717–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13(1):20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein HA, Syamsumir DF, Radzi SAM, Siong JYF, Zin NAM, Abdullah MA. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour Bioprocess. 2020;7(1):39.

    Article 

    Google Scholar
     

  • Davoodbasha M, Edachery B, Nooruddin T, Lee SY, Kim JW. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb Pathog. 2018;115:233–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Cao Y, Guo Y, Zhu Z, Zhang C. Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (eustigmatophyceae) and preliminary identification of bioactive compound. Algal Res. 2021;59:102446.

    Article 

    Google Scholar
     

  • Lee S, Lee YJ, Choi S, Park SB, Tran QG, Heo J, Kim HS. Development of an alcohol-inducible gene expression system for recombinant protein expression in Chlamydomonas reinhardtii. J Appl Phycol. 2018;30(4):2297–304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin JH, Choi J, Jeon J, Kumar M, Lee J, Jeong WJ, Kim SR. The establishment of new protein expression system using n starvation inducible promoters in Chlorella. Sci Rep. 2020;10(1):12713.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JE, Lee MH, Cho EJ, Kim JH, Chung BY, Kim JH. Characterization of non-cg genomic hypomethylation associated with gamma-ray-induced suppression of CMT3 transcription in Arabidopsis thaliana. Radiat Res. 2013;180(6):638–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal S, Go YS, Lee SS, Chung BY, Kim JH. Characterization of histone modifications associated with DNA damage repair genes upon exposure to gamma rays in Arabidopsis seedlings. J Radiat Res. 2016;57(6):646–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi SH, Ryu TH, Kim JI, Lee S, Lee SS, Kim JH. Mutation in DDM1 inhibits the homology directed repair of double strand breaks. PLoS ONE. 2019;14(2): e0211878.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu TH, Go YS, Choi SH, Kim JI, Chung BY, Kim JH. SOG1-dependent NAC103 modulates the DNA damage response as a transcriptional regulator in Arabidopsis. Plant J. 2019;98(1):83–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Lee S, Lee I, Nam H. Amp-bert: Prediction of antimicrobial peptide function based on a BERT model. Protein Sci. 2023;32(1): e4529.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Zidek A, Nelson AWR, Bridgland A, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng WF, Zhou XX, Willems S, Ammar C, Wahle M, Bludau I, Voytik E, Strauss MT, Mann M. Alphapeptdeep: a modular deep learning framework to predict peptide properties for proteomics. Nat Commun. 2022;13(1):7238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asano T, Miwa A, Maeda K, Kimura M, Nishiuchi T. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog. 2013;9(8):e1003581.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pecenkova T, Pleskot R, Zarsky V. Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein. Int J Mol Sci. 2017;18(4):825.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abolhasani A, Barzegar M, Sahari MA. Effect of gamma irradiation on the extraction yield, antioxidant, and antityrosinase activities of pistachio green hull extract. Radiat Phys Chem. 2018;144:373–8.

    Article 
    CAS 

    Google Scholar
     

  • Kang JA, Song HY, Byun EH, Ahn NG, Kim HM, Nam YR, Lee GH, Jang BS, Choi DS, Lee DE, et al. Gamma-irradiated black ginseng extract inhibits mast cell degranulation and suppresses atopic dermatitis-like skin lesions in mice. Food Chem Toxicol. 2018;111:133–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badaboina S, Bai HW, Na YH, Park CH, Kim TH, Lee TH, Chung BY. Novel radiolytic rotenone derivative, rotenoisin B with potent anti-carcinogenic activity in hepatic cancer cells. Int J Mol Sci. 2015;16(8):16806–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon BK, Jackman JA, Valle-Gonzalez ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 2018;19(4):1114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021;82: 101093.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammer CT, Wills ED. The effect of ionizing radiation on the fatty acid composition of natural fats and on lipid peroxide formation. Int J Radiat Biol Relat Stud Phys Chem Med. 1979;35(4):323–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao C, Lei G, Horbath A, Gan B. Chapter 3 – Assessment of lipid peroxidation in irradiated cells. In: Sato A, Kraynak J, Marciscano AE, Galluzzi L, editors. Methods in cell biology, vol. 172. San Diego: Academic Press; 2022. p. 37–50.


    Google Scholar
     

  • Harris EH. The Chlamydomonas sourcebook: A comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.


    Google Scholar
     

  • Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC. High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell. 2014;26(4):1398–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song BS, Kim BK, Yoon YM, Jung K, Park JH, Kim JK, Kim CT, Lee Y, Kim DH, Ryu SR. Identification of red pepper powder irradiated with different types of radiation using luminescence methods: a comparative study. Food Chem. 2016;200:293–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Saint DA. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem. 2002;302(1):52–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadiatullah H, Wang H, Liu Y-X, Fan Z-C. Chlamydomonas reinhardtii-derived multimer Mytichitin-CB possesses potent antibacterial properties. Process Biochem. 2020;96:21–9.

    Article 
    CAS 

    Google Scholar
     

  • Hwangbo K, Ahn J-W, Lim J-M, Park Y-I, Liu JR, Jeong W-J. Overexpression of stearoyl-ACP desaturase enhances accumulations of oleic acid in the green alga Chlamydomonas reinhardtii. Plant Biotechnol Rep. 2014;8(2):135–42.

    Article 

    Google Scholar
     

  • Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Xiao P, Hao W, Hu Z, Lei A, et al. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol Biofuels. 2018;11:40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/; 2023.

  • Villanueva RAM, Chen ZJ. ggplot2: Elegant graphics for data analysis (2nd ed.). measurement: interdisciplinary research and perspectives. 2019;17(3):160–7.

  • RStudio Team. RStudio: Integrated development environment for R: PBC, Boston, MA. URL http://www.rstudio.com/; 2023.



  • Source link