Scientific Papers

Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases | Military Medical Research


  • Airhihenbuwa CO, Tseng TS, Sutton VD, Price L. Global perspectives on improving chronic disease prevention and management in diverse settings. Prev Chronic Dis. 2021;18:E33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meetoo D. Chronic diseases: the silent global epidemic. Br J Nurs. 2008;17(21):1320–5.

    Article 
    PubMed 

    Google Scholar
     

  • Hacker K. The burden of chronic disease. Mayo Clin Proc Innov Qual Outcomes. 2024;8(1):112–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. The top 10 causes of death. World Health Organization; 2020 [cited 2nd July 2024]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-ofdeath#:~:text=The%20top%20global%20causes%20of,birth%20asphyxia%20and%20birth%20trauma%2C.

  • Nishtar S, Niinisto S, Sirisena M, Vazquez T, Skvortsova V, Rubinstein A, et al. Time to deliver: report of the WHO independent high-level commission on NCDs. Lancet. 2018;392(10143):245–52.

    Article 
    PubMed 

    Google Scholar
     

  • Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, et al. Chronic diseases, inflammation, and spices: how are they linked?. J Transl Med. 2018;16(1):1–25.

    Article 

    Google Scholar
     

  • Sacco R, Smith S, Holmes D, Shurin S, Brawley O, Cazap E, et al. Accelerating progress on non-communicable diseases. Lancet. 2013;382(9895):e4–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotteas EA, Boulas P, Gkiozos I, Tsagkouli S, Tsoukalas G, Syrigos KN. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis. Anticancer Res. 2014;34(9):4665–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaminska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, et al. The role of the cell–cell interactions in cancer progression. J Cell Mol Med. 2015;19(2):283–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: a potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol. 2020;105(2):219–29.

    Article 
    PubMed 

    Google Scholar
     

  • Frigo DE, Bondesson M, Williams C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem. 2021;65(6):847–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gangwar SK, Kumar A, Yap KC, Jose S, Parama D, Sethi G, et al. Targeting nuclear receptors in lung cancer-novel therapeutic prospects. Pharmaceuticals (Basel). 2022;15(5):624.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, et al. Demystifying the functional role of nuclear receptors in esophageal cancer. Int J Mol Sci. 2022;23(18):10952.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, et al. Nuclear receptors in oral cancer-Emerging players in tumorigenesis. Cancer Lett. 2022;536:215666.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, et al. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol. 2024;14:1383939.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenbaum S, Baniahmad A. Nuclear receptors: structure, function and involvement in disease. Int J Biochem Cell Biol. 1997;29(12):1325–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McEwan IJ. Nuclear receptors: one big family. Methods Mol Biol. 2009;505:3–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz GN, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990;249(4974):1266–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bover J, Egido J, Fernandez-Giraldez E, Praga M, Solozabal-Campos C, Torregrosa JV, et al. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia. 2015;35(1):28–41.

    PubMed 

    Google Scholar
     

  • Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 2018;29(1):118–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arciero CA, Guo Y, Jiang R, Behera M, O’Regan R, Peng L, et al. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER/HER2+ breast cancer. Clin Breast Cancer. 2019;19(4):236–45.

    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Zhao M, Cui L, Ren Y, Zhang J, Chen J, et al. Characterization of a novel HDAC/RXR/HtrA1 signaling axis as a novel target to overcome cisplatin resistance in human non-small cell lung cancer. Mol Cancer. 2020;19(1):134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song F, Mao YJ, Hu Y, Zhao SS, Wang R, Wu WY, et al. Acacetin attenuates diabetes-induced cardiomyopathy by inhibiting oxidative stress and energy metabolism via PPAR-alpha/AMPK pathway. Eur J Pharmacol. 2022;922:174916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon HY, Pornour M, Ryu H, Khadka S, Xu R, Jang J, et al. SMAD3 promotes expression and activity of the androgen receptor in prostate cancer. Nucleic Acids Res. 2023;51(6):2655–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey DP, Picard D. Multidirectional interplay between nuclear receptors and microRNAs. Curr Opin Pharmacol. 2010;10(6):637–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knape T, Flesch D, Kuchler L, Lisa KS, Giegerich AK, Labocha S, et al. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Eur J Pharmacol. 2015;755:16–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang K, Jo H, Echesabal-Chen J, Stamatikos A. Combined LXR and RXR agonist therapy increases ABCA1 protein expression and enhances ApoAI-mediated cholesterol efflux in cultured endothelial cells. Metabolites. 2021;11(9):640.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin CH, Byun J, Lee K, Kim B, Noh YK, Tran NL, et al. Exosomal miRNA-19a and miRNA-614 induced by air pollutants promote proinflammatory M1 macrophage polarization via regulation of RORα expression in human respiratory mucosal microenvironment. J Immunol. 2020;205(11):3179–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang Y, Song Y, Luo Y, Song J, Li C, Yang S, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radic Biol Med. 2022;192:25–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Qian L, Pi L, Meng X. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine. 2023;165:156175.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papi A, De Carolis S, Bertoni S, Storci G, Sceberras V, Santini D, et al. PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche. J Cell Physiol. 2014;229(11):1595–606.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Wu Y, Li Y, Li K, Hou S, Ding M, et al. Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5). J Zhejiang Univ Sci B. 2023;24(3):248–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang T, Deng CX. Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci. 2019;15(1):1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, et al. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev. 2023;73:114–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urban SK, Mocan T, Sanger H, Lukacs-Kornek V, Kornek M. Extracellular vesicles in liver diseases: diagnostic, prognostic, and therapeutic application. Semin Liver Dis. 2019;39(1):70–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, et al. Exosomes: biomarkers and therapeutic targets of diabetic vascular complications. Front Endocrinol (Lausanne). 2021;12:720466.

    Article 
    PubMed 

    Google Scholar
     

  • Rahman MA, Patters BJ, Kodidela S, Kumar S. Extracellular vesicles: intercellular mediators in alcohol-induced pathologies. J Neuroimmune Pharmacol. 2020;15(3):409–21.

    Article 
    PubMed 

    Google Scholar
     

  • Lopes D, Lopes J, Pereira-Silva M, Peixoto D, Rabiee N, Veiga F, et al. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil Med Res. 2023;10(1):19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiral J. Extra cellular vesicles in blood circulation as biomarkers and messengers of patho-hysiological activity and alterations. Transfus Apher Sci. 2021;60(4):103209.

    Article 
    PubMed 

    Google Scholar
     

  • Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavya ANL, Subramanian S, Ramakrishna S. Therapeutic applications of exosomes in various diseases: a review. Biomater Adv. 2022;134:112579.

    Article 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mardente S, Aventaggiato M, Splendiani E, Mari E, Zicari A, Catanzaro G, et al. Extra-cellular vesicles derived from thyroid cancer cells promote the epithelial to mesenchymal transition (EMT) and the transfer of malignant phenotypes through immune mediated mechanisms. Int J Mol Sci. 2023;24(3):2754.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witwer KW, Théry C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Taylor & Francis; 2019. p. 1648167.


    Google Scholar
     

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scavo MP, Depalo N, Tutino V, De Nunzio V, Ingrosso C, Rizzi F, et al. Exosomes for diagnosis and therapy in gastrointestinal cancers. Int J Mol Sci. 2020;21(1):367.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willms E, Cabanas C, Mager I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol. 2018;9:738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu R, Li X, Zhu W, Wang Y, Zhao D, Wang X, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology. 2019;70(4):1317–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Li W, Yu W, Rao T, Li H, Ruan Y, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics. 2021;11(18):8660–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Alibashe Ahmed M, et al. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes. 2017;66(2):460–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28(8):862–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, et al. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 2023;8(1):121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 2020;11(1):373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Zhang Y, Gong H, Luo S, Cui Y. The role of exosomes and their applications in cancer. Int J Mol Sci. 2021;22(22):12204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, et al. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev. 2024;43(1):321–62.

    Article 
    PubMed 

    Google Scholar
     

  • Manickasamy MK, Sajeev A, BharathwajChetty B, Alqahtani MS, Abbas M, Hegde M, et al. Exploring the nexus of nuclear receptors in hematological malignancies. Cell Mol Life Sci. 2024;81(1):78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulman IG. Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev. 2010;62(13):1307–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, et al. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev. 2023;42(3):765–822.

    Article 
    PubMed 

    Google Scholar
     

  • Girisa S, Henamayee S, Parama D, Rana V, Dutta U, Kunnumakkara AB. Targeting farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Mol Biomed. 2021;2(1):21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girisa S, Rana V, Parama D, Dutta U, Kunnumakkara AB. Differential roles of farnesoid X receptor (FXR) in modulating apoptosis in cancer cells. Adv Protein Chem Struct Biol. 2021;126:63–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jose S, Devi SS, Sajeev A, Girisa S, Alqahtani MS, Abbas M, et al. Repurposing FDA-approved drugs as FXR agonists: a structure based in silico pharmacological study. Biosci Rep. 2023;43(3):BSR20212791.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294(5548):1866–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol. 2007;69:201–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer-uncovering new and evolving roles through genomic analysis. Nat Rev Genet. 2018;19(3):160–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sever R, Glass CK. Signaling by nuclear receptors. Cold Spring Harb Perspect Biol. 2013;5(3):a016709.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Germain P, Altucci L, Bourguet W, Rochette-Egly C, Gronemeyer H. Nuclear receptor superfamily: principles of signaling. Pure Appl Chem. 2003;75(11–12):1619–64.

    Article 
    CAS 

    Google Scholar
     

  • Delerive P, De Bosscher K, Vanden Berghe W, Fruchart JC, Haegeman G, Staels B. DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha. Mol Endocrinol. 2002;16(5):1029–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Barger PM, Browning AC, Garner AN, Kelly DP. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α: a potential role in the cardiac metabolic stress response. J Biol Chem. 2001;276(48):44495–501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Driggers PH, Segars JH, Rubino DM. The proto-oncoprotein Brx activates estrogen receptor β by a p38 mitogen-activated protein kinase pathway. J Biol Chem. 2001;276(50):46792–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rochette-Egly C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal. 2003;15(4):355–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tremblay A, Tremblay GB, Labrie F, Giguère V. Ligand-independent recruitment of SRC-1 to estrogen receptor β through phosphorylation of activation function AF-1. Mol Cell. 1999;3(4):513–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A. 1999;96(10):5458–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S. Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol Endocrinol. 1997;11(1):48–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Migliaccio A, Domenico MD, Green S, Falco AD, Kajtaniak E, Blasi F, et al. Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol Endocrinol. 1989;3(7):1061–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rochette-Egly C, Oulad-Abdelghani M, Staub A, Pfister V, Scheuer I, Chambon P, et al. Phosphorylation of the retinoic acid receptor-alpha by protein kinase A. Mol Endocrinol. 1995;9(7):860–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol. 2000;20(14):5041–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci U S A. 2001;98(17):9713–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ. Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem. 2001;276(25):22177–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowan BG, Weigel NL, O’Malley BW. Phosphorylation of steroid receptor coactivator-1: identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem. 2000;275(6):4475–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem. 2001;276(17):13505–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan LW, Gambee JE. Phosphorylation of p300 at serine 89 by protein kinase C. J Biol Chem. 2000;275(52):40946–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh JC, Jurutka P, Nakajima S, Galligan MA, Haussler CA, Shimizu Y, et al. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem. 1993;268(20):15118–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Pace PE, Coombes RC, Ali S. Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol Cell Biol. 1999;19(2):1002–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delmotte M-H, Tahayato A, Formstecher P, Lefebvre P. Serine 157, a retinoic acid receptor α residue phosphorylated by protein kinase C in vitro, is involved in RXRRARalpha heterodimerization and transcriptional activity. J Biol Chem. 1999;274(53):38225–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie T, Chen C, Peng Z, Brown BC, Reisz JA, Xu P, et al. Erythrocyte metabolic reprogramming by sphingosine 1-phosphate in chronic kidney disease and therapies. Circ Res. 2020;127(3):360–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerf ME. Transcription factors regulating beta-cell function. Eur J Endocrinol. 2006;155(5):671–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Sousa-Coelho AL, Marrero PF, Haro D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J. 2012;443(1):165–71.

    Article 
    PubMed 

    Google Scholar
     

  • Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002;250(1):1–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr. 2012;3(3):295–306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812(8):1007–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee AH. The role of CREB-H transcription factor in triglyceride metabolism. Curr Opin Lipidol. 2012;23(2):141–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Havula E, Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol. 2012;23(6):640–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002;110(12):1839–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong RH, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol. 2010;10(6):684–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelkamp D, van Heyningen V. Transcription factors in disease. Curr Opin Genet Dev. 1996;6(3):334–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aud D, Peng SL. Mechanisms of disease: transcription factors in inflammatory arthritis. Nat Clin Pract Rheumatol. 2006;2(8):434–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development. 2018;145(20):dev164384.

    Article 
    PubMed 

    Google Scholar
     

  • Kunnumakkara AB, Shabnam B, Girisa S, Harsha C, Banik K, Devi TB, et al. Inflammation, NF-kappaB, and chronic diseases: how are they linked? Crit Rev Immunol. 2020;40(1):1–39.

    Article 
    PubMed 

    Google Scholar
     

  • Monisha J, Padmavathi G, Roy NK, Deka A, Bordoloi D, Anip A, et al. NF-κB blockers gifted by mother nature: prospectives in cancer cell chemosensitization. Curr Pharm Des. 2016;22(27):4173–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription factors in cancer development and therapy. Cancers (Basel). 2020;12(8):2296.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darnell JE Jr. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2(10):740–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becnel LB, Darlington YF, Ochsner SA, Easton-Marks JR, Watkins CM, McOwiti A, et al. Nuclear receptor signaling atlas: opening access to the biology of nuclear receptor signaling pathways. PLoS One. 2015;10(9):e0135615.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans RM. The nuclear receptor superfamily: a rosetta stone for physiology. Mol Endocrinol. 2005;19(6):1429–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chae HS, Dale O, Mir TM, Ashfaq MK, Avula B, Walker LA, et al. Juniper berries regulate diabetes and obesity markers through modulating PPARalpha, PPARgamma, and LXR: in vitro and in vivo effects. J Med Food. 2023;26(5):307–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XX, Xie C, Libby AE, Ranjit S, Levi J, Myakala K, et al. The role of FXR and TGR5 in reversing and preventing progression of Western diet-induced hepatic steatosis, inflammation, and fibrosis in mice. J Biol Chem. 2022;298(11):102530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Liu X, Peng X, Xue R, Ji L, Shen X, et al. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis. Biochem Biophys Res Commun. 2014;448(1):50–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis. 2012;11:69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin. 1972;22(4):232–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huggins C. Endocrine methods of treatment of cancer of the breast. J Natl Cancer Inst. 1954;15(1):1–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38(11):1289–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 2003;21(10):1973–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez EA, Dueck AC, McCullough AE, Reinholz MM, Tenner KS, Davidson NE, et al. Predictability of adjuvant trastuzumab benefit in N9831 patients using the ASCO/CAP HER2-positivity criteria. J Natl Cancer Inst. 2012;104(2):159–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan M, Chang MC, Gonzalez R, Lategan B, del Barco E, Vera-Badillo F, et al. Outcomes of estrogen receptor negative and progesterone receptor positive breast cancer. PLoS One. 2015;10(7):e0132449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazarus KA, Zhao Z, Knower KC, To SQ, Chand AL, Clyne CD. Oestradiol reduces liver receptor homolog-1 mRNA transcript stability in breast cancer cell lines. Biochem Biophys Res Commun. 2013;438(3):533–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darsigny M, Babeu JP, Seidman EG, Gendron FP, Levy E, Carrier J, et al. Hepatocyte nuclear factor-4alpha promotes gut neoplasia in mice and protects against the production of reactive oxygen species. Cancer Res. 2010;70(22):9423–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie T, Lamb JR, Martin E, Wang K, Tejpar S, et al. A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS One. 2012;7(7):e42001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushweller JH. Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer. 2019;19(11):611–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen XP, Lei FY, Qin YH, Zhou TB, Jiang L, Zhao YJ, et al. The role of retinoic acid receptors in the signal pathway of all-trans retinoic acid-induced differentiation in adriamycin-induced podocyte injury. J Recept Signal Transduct Res. 2014;34(6):484–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, et al. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget. 2022;13:408–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarei M, Barroso E, Palomer X, Dai J, Rada P, Quesada-Lopez T, et al. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol Metab. 2018;8:117–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Sanchez E, Firrincieli D, Housset C, Chignard N. Nuclear receptors in acute and chronic cholestasis. Dig Dis. 2015;33(3):357–66.

    Article 
    PubMed 

    Google Scholar
     

  • Harada K, Yuko K, Sato Y, Ikeda H, Nakanuma Y. Significance of oestrogen-related receptor gamma on biliary epithelial cells in the pathogenesis of primary biliary cirrhosis. J Clin Pathol. 2014;67(7):566–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verweij FJ, Middeldorp JM, Pegtel DM. Intracellular signaling controlled by the endosomal-exosomal pathway. Commun Integr Biol. 2012;5(1):88–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE-/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 2019;510(4):565–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L, et al. CircRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep. 2021;23(5):311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah M, Nakamura T, Ferdous T, Gao Y, Chen Y, Zou K, et al. Cholesterol regulates exosome release in cultured astrocytes. Front Immunol. 2021;12:722581.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, et al. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic. 2003;4(4):222–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldenström A, Ronquist G. Role of exosomes in myocardial remodeling. Circ Res. 2014;114(2):315–24.

    Article 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster BP, Balassa T, Benen TD, Dominovic M, Elmadjian GK, Florova V, et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci. 2016;53(6):379–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A. 2013;110(29):12048–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang W, Yin R, Zhu X, Yang S, Wang J, Zhou Z, et al. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol Ther Nucleic Acids. 2021;23:119–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130(9):2033–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, et al. Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology. 2021;161(3):968–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Liu Z, Wang C, Miao J, Zhou S, Ren Q, et al. Kidney tubular epithelial cells control interstitial fibroblast fate by releasing TNFAIP8-encapsulated exosomes. Cell Death Dis. 2023;14(10):672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv LL, Feng Y, Tang TT, Liu BC. New insight into the role of extracellular vesicles in kidney disease. J Cell Mol Med. 2019;23(2):731–9.

    Article 
    PubMed 

    Google Scholar
     

  • Alasmari WA, Abdelfattah-Hassan A, El-Ghazali HM, Abdo SA, Ibrahim D, ElSawy NA, et al. Exosomes derived from BM-MSCs mitigate the development of chronic kidney damage post-menopause via interfering with fibrosis and apoptosis. Biomolecules. 2022;12(5):663.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu S, Cheuk YC, Jia Y, Chen T, Chen J, Luo Y, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-21a-5p alleviates renal fibrosis by attenuating glycolysis by targeting PFKM. Cell Death Dis. 2022;13(10):876.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Guo W, Guo Y, Chen X, Liu W. Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis via regulating Smurf 2/Smad 7. Front Biosci (Landmark Ed). 2022;27(1):17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer. 2019;18(1):74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao Y, Lu W, Xu P, Shi H, Chen D, Chen Y, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure. Hepatol Int. 2021;15(4):957–69.

    Article 
    PubMed 

    Google Scholar
     

  • Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515(2):352–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye Z, Hu J, Xu H, Sun B, Jin Y, Zhang Y, et al. Serum exosomal microRNA-27-3p aggravates cerebral injury and inflammation in patients with acute cerebral infarction by targeting PPARgamma. Inflammation. 2021;44(3):1035–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Sun Y, Lin X, Zhang D, Hu C, Liu J, et al. Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways. Vascul Pharmacol. 2022;143:106968.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Y, Yang LJ, Liu H, Song YJ, Yang QQ, Liu Y, et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis. Cell Rep. 2023;42(1):111948.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreeva OE, Sorokin DV, Mikhaevich EI, Bure IV, Shchegolev YY, Nemtsova MV, et al. Towards unravelling the role of ERα-targeting miRNAs in the exosome-mediated transferring of the hormone resistance. Molecules. 2021;26(21):6661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin X, Zeng W, Wu B, Wang L, Wang Z, Tian H, et al. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 2020;33(3):108278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten pathways. Oncogene. 2018;37(31):4239–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu G, Ouyang X, Sun Y, Xiao Y, You B, Gao Y, et al. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death Differ. 2020;27(12):3258–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong F, Mao X, Zhang S, Xie H, Yan B, Wang B, et al. HPV + HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity. Cancer Lett. 2020;478:34–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Yang Y, Li H, Xu L, You H, Liu Y, et al. Exosomal microRNAs induce tumor-associated macrophages via PPARγ during tumor progression in SHH medulloblastoma. Cancer Lett. 2022;535:215630.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang ZG, Deng MS, Su JQ, Liu DB, Zhou Y. Exosomal miR-181a-5p derived from SAOS-2 cells promotes macrophages M2 polarization by targeting RORA. Kaohsiung J Med Sci. 2023;39(2):124–33.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen B, Xu N, Xu P, Lin W, Liu C, et al. Exosomes promote the transition of androgen-dependent prostate cancer cells into androgen-independent manner through up-regulating the heme oxygenase-1. Int J Nanomedicine. 2021;16:315–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, et al. CD45ROCD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics. 2021;11(11):5330–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li P, Hong G, Zhan W, Deng M, Tu C, Wei J, et al. Endothelial progenitor cell derived exosomes mediated miR-182-5p delivery accelerate diabetic wound healing via down-regulating PPARG. Int J Med Sci. 2023;20(4):468–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Z, Petree JR, Lee FE, Fan X, Salaita K, Guidot DM, et al. Macrophages exposed to HIV viral protein disrupt lung epithelial cell integrity and mitochondrial bioenergetics via exosomal microRNA shuttling. Cell Death Dis. 2019;10(8):580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Xiao F, Sun J, Wang Q, Wang A, Zhang F, et al. Hepatocyte-derived extracellular vesicles miR-122-5p promotes hepatic ischemia reperfusion injury by regulating Kupffer cell polarization. Int Immunopharmacol. 2023;119:110060.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, Yang X, Wang S, Wu Y, Zheng L, Tang Y, et al. Human umbilical cord mesenchymal stromal cell-derived exosomes protect against MCD-induced NASH in a mouse model. Stem Cell Res Ther. 2022;13(1):517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castano C, Kalko S, Novials A, Parrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115(48):12158–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Li Y, Xu X, Gu J, Chen H, Gui Y. Exosomes rich in Wnt5 improved circadian rhythm dysfunction via enhanced PPARgamma activity in the 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett. 2023;802:137139.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Liu J, Zheng K, Chen L, Sun Y, Yao Z, et al. Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-gammaaxis. Vascul Pharmacol. 2021;136:106820.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnol. 2022;20(1):279.

    Article 
    CAS 

    Google Scholar
     

  • Ludwig N, Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 2018;22(5):409–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci. 2018;109(8):2364–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Xu C, Hua Y, Sun L, Cheng K, Jia Z, et al. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res. 2016;35(1):186.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Yang X, Guan H, Mizokami A, Keller ET, Xu X, et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol. 2016;49(2):838–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumski A, Ortega-Gomez A, Wichapong K, Winter C, Lemnitzer P, Viola JR, et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation. 2021;143(3):254–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tousoulis D, Guzik T, Padro T, Duncker DJ, De Luca G, Eringa E, et al. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC working group on coronary pathophysiology and microcirculation. Cardiovasc Res. 2022;118(16):3171–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.

    Article 
    PubMed 

    Google Scholar
     

  • Chapurin N, Wu J, Labby AB, Chandra RK, Chowdhury NI, Turner JH. Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol. 2022;150(1):22–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chua AJ, Francesco VD, Huang D, D’Souza A, Bleier BS, Amiji MM. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine (Lond). 2023;18(20):1399–415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, et al. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers (Basel). 2022;14(15):3090.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Su B, Zhang X, Liu Y, Wu H, Zhang T. Incomplete immune reconstitution in HIV/AIDS patients on antiretroviral therapy: challenges of immunological non-responders. J Leukoc Biol. 2020;107(4):597–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge C, Tan J, Dai X, Kuang Q, Zhong S, Lai L, et al. Hepatocyte phosphatase DUSP22 mitigates NASH-HCC progression by targeting FAK. Nat Commun. 2022;13(1):5945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison SA, Allen AM, Dubourg J, Noureddin M, Alkhouri N. Challenges and opportunities in NASH drug development. Nat Med. 2023;29(3):562–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Control Release. 2021;330:1152–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, et al. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules. 2021;26(17):5327.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, et al. Manganese-induced neurotoxicity: new insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front Neurosci. 2019;13:654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller TD, Bluher M, Tschop MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022;21(3):201–23.

    Article 
    PubMed 

    Google Scholar
     

  • Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold M, Pandeya N, Byrnes G, Renehan PAG, Stevens GA, Ezzati PM, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46.

    Article 
    PubMed 

    Google Scholar
     

  • Wu K, Feng J, Lyu F, Xing F, Sharma S, Liu Y, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun. 2021;12(1):5196.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Record M, Attia M, Carayon K, Pucheu L, Bunay J, Soules R, et al. Targeting the liver X receptor with dendrogenin a differentiates tumour cells to secrete immunogenic exosome-enriched vesicles. J Extracell Vesicles. 2022;11(4):e12211.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciaccio AM, Tuttolomondo A. Exosomal miRNAs as biomarkers of ischemic stroke. Brain Sci. 2023;13(12):1647.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer. 2024;23(1):67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Huang J, Chen W, Li G, Li Z, Lei J. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med. 2022;54(9):1390–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Wang Q, Yang Y, Zhou S, Zhang P, Feng T. The role of exosomal lncRNAs in cancer biology and clinical management. Exp Mol Med. 2021;53(11):1669–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin. 2018;39(4):501–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: insights from drug delivery to clinical perspectives. Nanomaterials (Basel). 2021;11(6):1481.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirzaaghasi A, Han Y, Ahn SH, Choi C, Park JH. Biodistribution and pharmacokinectics of liposomes and exosomes in a mouse model of sepsis. Pharmaceutics. 2021;13(3):427.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med. 2021;18(4):499–511.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi H, Kim MY, Kim DH, Yun H, Oh BK, Kim SB, et al. Quantitative biodistribution and pharmacokinetics study of GMP-grade exosomes labeled with 89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14(6):1118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Liu T, Hou X, Zhou Z, Zhang F, Ma H, et al. Exosomes secreted by mesenchymal stem cells delay brain aging by upregulating SIRT1 expression. Sci Rep. 2023;13(1):13213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, et al. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol. 2022;10:949724.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy. 2016;18(3):413–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia L, Zhang C, Lv N, Liang Z, Ma T, Cheng H, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics. 2022;12(6):2928–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomed. 2019;8:5679–90.

    Article 

    Google Scholar
     

  • Xie X, Song Q, Dai C, Cui S, Tang R, Li S, et al. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: a phase I/II clinical trial. Gen Psychiatr. 2023;36(5):e101143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon HH, Yang SH, Lee J, Park BC, Park KY, Jung JY, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study. Acta Derm Venereol. 2020;100(18):adv00310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Gao H, Wang D, Zhang C, Hu K, Zhang H, et al. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med. 2023;55(2):178–89.

    Article 
    PubMed 

    Google Scholar
     

  • Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, et al. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev Rep. 2022;18(6):2152–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu YG, Shi MM, Monsel A, Dai CX, Dong X, Shen H, et al. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: a pilot study. Stem Cell Res Ther. 2022;13(1):220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak H, Hadizadeh A, Heirani-Tabasi A, Soleimani M, Asbagh RA, Fazeli MS, et al. Safety and efficacy of injection of human placenta mesenchymal stem cells derived exosomes for treatment of complex perianal fistula in non-Crohn’s cases: clinical trial phase I. J Gastroenterol Hepatol. 2023;38(4):539–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazari H, Alborzi F, Heirani-Tabasi A, Hadizadeh A, Asbagh RA, Behboudi B, et al. Evaluating the safety and efficacy of mesenchymal stem cell-derived exosomes for treatment of refractory perianal fistula in IBD patients: clinical trial phase I. Gastroenterol Rep (Oxf). 2022;10:goac075.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31(1):145–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact. 2020;20:100261.

    Article 

    Google Scholar
     

  • Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun. 2016;7(1):1–9.

    Article 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, Hamri GCE, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat commun. 2018;9(1):1305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan F, Zhong Z, Wang Y, Feng Y, Mei Z, Li H, et al. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnol. 2020;18(1):115.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Wang L, Zeng X, Schwarz H, Nanda HS, Peng X, et al. Exosomes, a new star for targeted delivery. Front Cell Dev Biol. 2021;9:751079.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, et al. Challenges and opportunities in exosome research-perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1):011503.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das CK, Jena BC, Banerjee I, Das S, Parekh A, Bhutia SK, et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm. 2019;16(1):24–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar B, Garcia M, Murakami JL, Chen CC. Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta. 2016;1863(3):464–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tzng E, Bayardo N, Yang PC. Current challenges surrounding exosome treatments. Extracellular Vesicle. 2023;2:100023.

    Article 

    Google Scholar
     

  • Perocheau D, Touramanidou L, Gurung S, Gissen P, Baruteau J. Clinical applications for exosomes: are we there yet?. Br J Pharmacol. 2021;178(12):2375–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link