Scientific Papers

The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair | Biology Direct


  • Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Piipponen M, Liu Z, Li D, Bian X, Niu G, Geara J, Toma MA, Sommar P, Xu LN. Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death Differ. 2023;30(5):1334–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Jiang F, Wang C, Dong M, Wang C, Yan E, Wang Y, Zhu Z, Xiong X, Ding X, Ye J, He Y, Zhang H, Zhou J, Zhang W, Wu Y, Song X. Regulation of Semaphorin3A in the process of cutaneous wound healing. Cell Death Differ. 2022;29(10):1941–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cocchetto V, Magrin P, de Paula RA, Aidé M, Monte Razo L, Pantaleao L. Squamous cell carcinoma in chronic wound: Marjolin ulcer. Dermatol Online J. 2013;19(2):7.

    Article 
    PubMed 

    Google Scholar
     

  • Bellini E, Grieco MP, Raposio E. A journey through liposuction and liposculture: review. Ann Med Surg (Lond). 2017;24:53–60.

    Article 
    PubMed 

    Google Scholar
     

  • Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct. 2024;19(1):63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Paolis F, Testa S, Guarnaccia G, Reggio A, Fornetti E, Cicciarelli F, Deodati R, Bernardini S, Peluso D, Baldi J, Biagini R, Bellisari FC, Izzo A, Sgalambro F, Arrigoni F, Rizzo F, Cannata S, Sciarra T, Fuoco C, Gargioli C. Long-term longitudinal study on swine VML model. Biol Direct. 2023;18(1):42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi DS. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10(1):111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Migliorini F, Tingar M, Maffulli N. progress with stem cell therapies for tendon tissue regeneration. Expert Opin Biol Ther. 2020;20(11):1373–9.

    Article 
    PubMed 

    Google Scholar
     

  • Danon D, et al. Treatment of human ulcers by application of macrophages prepared from a blood unit. Exp Gerontol. 1997;32:633–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba- Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Phys. 2006;208:64–76.

    Article 
    CAS 

    Google Scholar
     

  • Gimble JM, Katz AJ, Bunnell BA. Adipose derived stem cells for regenerative medicine. Circ Res. 2007;100(1249–1260):8.


    Google Scholar
     

  • Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolter J, Feuerstein R, Zeis P, Hagemeyer N, Paterson N, d’Errico P, Baasch S, Amann L, Masuda T, Lösslein A, Gharun K, Meyer-Luehmann M, Waskow C, Franzke CW, Grün D, Lämmermann T, Prinz M, Henneke P. A Subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity. 2019;50(6):1482-1497.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva MT. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol. 2010;87:93–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deonarine K, Panelli MC, Stashower ME, Jin P, Smith K, Slade HB, Norwood C, Wang E, Marincola FM, Stroncek DF. Gene expression profiling of cutaneous wound healing. J Transl Med. 2007;5:11.

    Article 
    PubMed 

    Google Scholar
     

  • Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol. 2013;183:1352–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang J, Feng C, Chen W, et al. Redressing the interactions between stem cells and immune system in tissue regeneration. Biol Direct. 2021;16:18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21. https://doi.org/10.1038/nature07039.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cediel E, Vázquez-Cruz B, Navarro-Cid J, De Las Heras N, Sanz-Rosa D, Cachofeiro V, Lahera V. Role of endothelin-1 and thromboxane A2 in renal vasoconstriction induced by angiotensin II in diabetes and hypertension. Kidney Int. 2002;62:S2–7. https://doi.org/10.1046/j.1523-1755.62.s82.2.x.

    Article 

    Google Scholar
     

  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. https://doi.org/10.1002/path.2277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;10(79):541–66.

    Article 

    Google Scholar
     

  • Leibovich SJ, Ross R. The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975;78:71–100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol. 2007;25:19–25.

    Article 
    PubMed 

    Google Scholar
     

  • Jones RE, Foster DS, Longaker MT. Management of chronic wounds-2018. JAMA. 2018;320:1481–2.

    Article 
    PubMed 

    Google Scholar
     

  • Falanga V. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis. 2004;32:88–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin B, Zhao L, Wang H, Zhu H, Gai G, Wang L, et al. Progress in bioadhesive hydrogels. J Funct Polym. 2020;33:125–40.

    CAS 

    Google Scholar
     

  • Eaglstein WH. Moist wound healing with occlusive dressings: a clinical focus. Dermatol Surg. 2001;27:175–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 1994;2:165–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falanga V. Advanced treatments for non-healing chronic wounds. EWMA J. 2004;4:11–3.


    Google Scholar
     

  • Zhang X, Shu W, Yu Q, Qu W, Wang Y, Li R. Functional biomaterials for treatment of chronic wound. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00516.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Field CK, Kerstein M. Overview of wound healing in a moist environment. Am J Surg. 1994;167:S2–6.

    Article 

    Google Scholar
     

  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Zheng Y, Shi YJ, Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Delivery Transl Res. 2019;9:227–39.

    Article 

    Google Scholar
     

  • Venturi ML, Attinger CE, Mesbahi AN, Hess CL, Graw KS. Mechanisms and clinical applications of the vacuum-assisted closure (VAC)device: a review. Am J Clin Dermatol. 2005;6(3):185–94.

    Article 
    PubMed 

    Google Scholar
     

  • Streubel PN, Stinner DJ, Obremskey WT. Use of negative-pressure wound therapy in orthopaedic trauma. J Am Acad Orthop Surg. 2012;20(9):564–74.

    Article 
    PubMed 

    Google Scholar
     

  • Massey PR, Sakran JV, Mills AM, Sarani B, Aufhauser DD Jr, Sims CA, Pascual JL, Kelz RR, Holena DN. Hyperbaric oxygen therapy in necrotizing soft tissue infections. J Surg Res. 2012;177(1):146–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirby JP, Snyder J, Schuerer DJE, Peters JS, Bochicchio GV. Essentials of hyperbaric oxygen therapy: 2019 review. Mo Med. 2019;116(3):176–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baus A, Combes F, Lakhel A, Pradier J-P, Brachet M, Duhoux A, Duhamel P, Fossat S, Bey E. Chirurgie des brûlures graves au stade aigu. EMC, Techniques chirurgicales. Chirurgie plastique, esthétique, récontructrice,. 2017. https://doi.org/10.1016/S1286-9325(17)65528-6.

    Article 

    Google Scholar
     

  • Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil. 1993;14:653–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194:413–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat. 2020;31(6):639–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzola RF, Mazzola IC. The fascinating history of fat grafting. J Craniofac Surg. 2013;244:1069–71.

    Article 

    Google Scholar
     

  • Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg. 1995;19(5):421–5. https://doi.org/10.1007/BF00453875.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peer LA. Loss of weight and volume in human fat grafts: with postulation of a “cell survival theory.” Plast Reconstr Surg. 1950;5(3):217–30.

    Article 

    Google Scholar
     

  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gimble JM, Katz AJ, Bunnell BA. Adipose derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8:145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musina R, Bekchanova E, Sukhikh G. Comparison of mesen- chymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005;139:504–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mildmay-White A, Khan W. Cell surface markers on adipose-derived stem cells: a systematic review. Curr Stem Cell Res Ther. 2017;12(6):484–92. https://doi.org/10.2174/1574888X11666160429122133.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC immunophenotypical subsets during expansion in vitro. Int J Mol Sci. 2020;21(4):1408. https://doi.org/10.3390/ijms21041408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, Bunnell BA. Neurogenesis of rhesus adipose stromal cells. J Cell Sci. 2004;117:4289–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207:267–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26:2713–23.

    Article 
    PubMed 

    Google Scholar
     

  • Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22(3):313–25. https://doi.org/10.1111/wrr.12173.

    Article 
    PubMed 

    Google Scholar
     

  • Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15(9):1285–92. https://doi.org/10.1517/14712598.2015.1053867.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler, Thromb, Vasc Biol. 2009;29(4):503–10. https://doi.org/10.1161/atvbaha.108.178962.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28:321–6.

    Article 
    PubMed 

    Google Scholar
     

  • Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20(2):205–16.

    Article 
    PubMed 

    Google Scholar
     

  • Elsharawy MA, Naim M, Greish S. Human CD34+ stem cells promote healing of diabetic foot ulcers in rats. Interact Cardiovasc Thorac Surg. 2012;14(3):288–93. https://doi.org/10.1093/icvts/ivr068.

    Article 
    PubMed 

    Google Scholar
     

  • Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, Sung JH. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: Increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009;17(4):540–7. https://doi.org/10.1111/j.1524-475X.2009.00499.x.

    Article 
    PubMed 

    Google Scholar
     

  • Kim WS, Han J, Hwang SJ, Sung JH. An update on niche composition, signaling and functional regulation of the adipose- derived stem cells. Expert Opin Biol Ther. 2014;14(8):1091–102. https://doi.org/10.1517/14712598.2014.907785.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther. 2009;9(7):879–87. https://doi.org/10.1517/14712590903039684.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP. Characteristics of human lipoaspirate- isolated mesenchymal stromal cells cultivated under a lower oxygen tension. Tsitologiia. 2009;51:5–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun. 2007;358:948–1018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altman AM, Matthias N, Yan Y, Song YH, Bai X, Chiu ES, Alt EU. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials. 2008;29(10):1431–42. https://doi.org/10.1016/j.biomaterials.2007.11.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, Fisher DE. Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opin Biol Ther. 2014;14(11):1569–79. https://doi.org/10.1517/14712598.2014.935331.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiedler T, Salamon A, Adam S, Herzmann N, Taubenheim J, Peters K. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Exp Cell Res. 2013;319(18):2883–92. https://doi.org/10.1016/j.yexcr.2013.08.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–62.

    Article 
    PubMed 

    Google Scholar
     

  • Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63:1103–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Investig. 2011;121(3):985–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings—a promising therapeutic approach for chronic wounds. Biol Chem. 2021;402(11):1289–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine. 2011;56:256–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ, Mace KA. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Model Mech. 2013;6:1434–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dardenne C, Salon M, Authier H, Meunier E, AlaEddine M, Bernad J, Bouschbacher M, Lefèvre L, Pipy B, Coste A. Topical aspirin administration improves cutaneous wound healing in diabetic mice through a phenotypic switch of wound macrophages toward an anti-inflammatory and proresolutive profile characterized by LXA4 release. Diabetes. 2022;71(10):2181–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barman PK, Urao N, Koh TJ. Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. J Pathol. 2019;249:435–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang J, Maienschein-Cline M, Koh TJ. Enhanced proliferation of Ly6C+ monocytes/macrophages contributes to chronic inflammation in skin wounds of diabetic mice. J Immunol. 2021;206:621–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santler B, Goerge T. Chronic venous insufficiency—a review of pathophysiology, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017;15:538–56.

    PubMed 

    Google Scholar
     

  • Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 2017;122:74–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha BH, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Delivery strategies to control inflammatory response: modulating M1–M2 polarization in tissue engineering applications. J Control Release. 2016;28(240):349–63.

    Article 

    Google Scholar
     

  • Fergal OBJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14:88–95.

    Article 

    Google Scholar
     

  • Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017;105(2):431–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Adv Healthc Mater. 2021;10(16): e2100477.

    Article 
    PubMed 

    Google Scholar
     

  • Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Biotechnology. 1990;8:854–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Chevalier E, Chulia D, Pouget C, Viana M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci. 2008;97:1135–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E. The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng. 2008;22:129–43.

    Article 

    Google Scholar
     

  • Orive G, Hernandez RM, Gascon AR, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Shapiro AM, et al. Cell encapsulation: Promise and progress. Nat Med. 2003;9:104–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices. 2005;2:303–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingram JH, Korossis S, Howling G, Fisher J, Ingham E. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 2007;13:1561–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, Kuzon WM, Dennis RG, Brown DL. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng. 2005;11:778–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release Off J Control Release Soc. 2010;142:149–59.

    Article 
    CAS 

    Google Scholar
     

  • Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowlands AS, Lim SA, Martin D, Cooper-White JJ. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials. 2007;28:2109–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthukumar GST, Sastry TP, Chamundeeswari M. Collagen as a potential biomaterial in biomedical applications. Rev Adv Mater Sci. 2019;53(1):29–39.

    Article 

    Google Scholar
     

  • Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: Application of electrospun scaffolds. Adv Healthc Mater. 2015;4:1114–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv DrugDeliv Rev. 2003;55:1595–611.

    Article 
    CAS 

    Google Scholar
     

  • Burck J, Heissler S, Geckle U, Ardakani MF, Schneider R, Ulrich AS, Kazanci M. Resemblanceof electrospun collagen nanofibers to their native structure. Langmuir ACS J Surf Colloids. 2013;29:1562–72.

    Article 

    Google Scholar
     

  • Gómez-Guillén M, Giménez B, López-Caballero MA, Montero M. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll. 2011;25(8):1813–27.

    Article 

    Google Scholar
     

  • Schneider J, Biedermann T, Widmer D, Montano I, Meuli M, Reichmann E, Schiestl C. Matriderm versus Integra: a comparative experimental study. Burns. 2009;35(1):51–7.

    Article 
    PubMed 

    Google Scholar
     

  • Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagenasanimplantablematerialin medicine and dentistry. J Oral Implantol. 2002;28:220–5.

    Article 
    PubMed 

    Google Scholar
     

  • Shen X, Nagai N, Murata M, Nishimura D, Sugi M, Munekata M. Development of salmon milt DNA/salmon collagen composite for wound dressing. J Mater Sci Mater Med. 2008;19:3473–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kempf M, Miyamura Y, Liu PY, Chen AC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32:4782–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater. 2012;1:10–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Taebnia N, Orive G. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther. 2019;19(8):773–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-based hybrid scaffolds: promising wound dressings. Polymers. 2021;13:2959. https://doi.org/10.3390/polym13172959.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang JI, Park KM. Advances in gelatin-based hydrogels for wound management. J Mater Chem B. 2021;9:1503–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Przybylowski CJ, So V, DeTranaltes K, Walker C, Baranoski JF, Chapple K, Sanai N. Sterile gelatin film reduces cortical injury associated with brain tumor re-resection. Oper Neurosurg (Hagerstown). 2021;20(4):383–8.

    Article 
    PubMed 

    Google Scholar
     

  • Choi YS, Lee SB, Hong SR, Lee YM, Song KW, Park MH. Studies on gelatin-based sponges. Part III: a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J Mater Sci Mater Med. 2001;12:67–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2021;6(8):267–95.


    Google Scholar
     

  • Nagura M, Yokota H, Ikeura M, Gotoh Y, Ohkoshi Y. Structures and physical properties of cross-linked gelatin fibers. Polym J. 2002;34(10):761–6.

    Article 
    CAS 

    Google Scholar
     

  • Kang H-W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials. 1999;20(14):1339–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chouhan D, Chakraborty B, Nandi SK, Mandal BB. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater. 2017;15(48):157–74.

    Article 

    Google Scholar
     

  • Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Appl Bio Mater. 2019;2(12):5460–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang M. Silk-based biomaterials. Microsc Res Tech. 2017;80(3):321–30.

    Article 
    PubMed 

    Google Scholar
     

  • Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020;103:24–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sell SA, Francis MP, Garg K, McClure MJ, Simpson DG, Bowlin GL. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed Mater. 2008;3: 045001.

    Article 
    PubMed 

    Google Scholar
     

  • Rothwell SW, Sawyer E, Dorsey J, Flournoy WS, Settle T, Simpson D, Cadd G, Janmey P, White C, Szabo KA. Wound healing and the immune response in swine treated with a hemostatic bandage composed of salmon thrombin and fibrinogen. J Mater Sci Mater Med. 2009;20:2155–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogosanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinarvand P, Hashemi SM, Seyedjafari E, Shabani I, Mohammadi-Sangcheshmeh A, Farhadian S, Soleimani M. Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J Surg Res. 2012;172:e1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulery DB, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Pol Phys. 2011;49:832–64.

    Article 
    CAS 

    Google Scholar
     

  • Zhou W, Zhao M, Zhao Y, Mou Y. Afibringelloadedwithchitosannanoparticlesforlocaldeliveryof rhegf: Preparation and in vitro release studies. J Mater Sci Mater Med. 2011;22:1221–30.

    Article 
    PubMed 

    Google Scholar
     

  • Strukova SM, Dugina TN, Chistov IV, Lange M, Markvicheva EA, Kuptsova S, Zubov VP, Glusa E. Immobilized thrombin receptor agonist peptide accelerates wound healing in mice. Clin Appl Thromb Hemost. 2001;7:325–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng X, Tian F, Yang J, He CN, Xing N, Li F. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med. 2010;21:1751–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kruse CR, Nuutila K, Lee CCY, Kiwanuka E, Singh M, Caterson EJ, et al. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015;23:456–64. https://doi.org/10.1111/wrr.12303.

    Article 
    PubMed 

    Google Scholar
     

  • Abdullahi A, Amini-Nik S, Jeschke MG. 7—Stem cell therapies for wounds. In: Ågren MS, editor. Wound healing biomaterials. Duxford, UK: Woodhead Publishing; 2016. p. 177–200.

    Chapter 

    Google Scholar
     

  • Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;1(9):419.

    Article 

    Google Scholar
     

  • Danon D, Madjar J, Edinov E, Knyszynski A, Brill S, Diamantshtein L, Shinar E. Treatment of human ulcers by application of macrophages prepared from a blood unit. Exp Gerontol. 1997;32(6):633–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feisst V, Meidinger S, Locke MB. From bench to bedside: Use of human adipose-derived stem cells. Stem Cells Cloning. 2015;8:149–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12:735.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29(372): n71.

    Article 

    Google Scholar
     

  • Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17:153–62.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SH, Lee JH, Cho KH. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol. 2011;23(2):150–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, Hattori H, Takase B, Ishizuka T, Kishimoto S, Amano Y, Yamamoto N, Azuma R, Kiyosawa T. Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen. 2007;15(4):505–10.

    Article 
    PubMed 

    Google Scholar
     

  • Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, Azuma R, Nakamura S, Kiyosawa T, Ishihara M, Kanatani Y. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg. 2009;62(3):317–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrera JA, Trotsyuk AA, Maan ZN, Bonham CA, Larson MR, Mittermiller PA, Henn D, Chen K, Mays CJ, Mittal S, Mermin-Bunnell AM, Sivaraj D, Jing S, Rodrigues M, Kwon SH, Noishiki C, Padmanabhan J, Jiang Y, Niu S, Inayathullah M, Rajadas J, Januszyk M, Gurtner GC. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns. Tissue Eng Part A. 2021;27(11–12):844–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo J, Hu H, Gorecka J, Bai H, He H, Assi R, Isaji T, Wang T, Setia O, Lopes L, Gu Y, Dardik A. Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells. Am J Physiol Cell Physiol. 2018;315(6):C885–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shokrgozar MA, Fattahi M, Bonakdar S, Ragerdi Kashani I, Majidi M, Haghighipour N, Bayati V, Sanati H, Saeedi SN. Healing potential of mesenchymal stem cells cultured on a collagen-based scaffold for skin regeneration. Iran Biomed J. 2012;16(2):68–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domingues JA, Cherutti G, Motta AC, Hausen MA, Oliveira RT, Silva-Zacarin EC, Barbo ML, Duek EA. Bilaminar device of poly(lactic-co-glycolic acid)/collagen cultured with adipose-derived stem cells for dermal regeneration. Artif Organs. 2016;40(10):938–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Y, Rodrigues M, Kwon SH, Li X, Brett SAEA, Elvassore N, Wang W, Gurtner GC. Acceleration of diabetic wound regeneration using an in situ-formed stem-cell-based skin substitute. Adv Healthcare Mater. 2018;7(17): e1800432.

    Article 

    Google Scholar
     

  • Jin X, Shang Y, Zou Y, Xiao M, Huang H, Zhu S, Liu N, Li J, Wang W, Zhu P. Injectable hypoxia-induced conductive hydrogel to promote diabetic wound healing. ACS Appl Mater Interfaces. 2020;12(51):56681–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh CF, Chen CH, Kao HH, Govindaraju DT, Dash BS, Chen JP. PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 2022;10(11):2902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng YS, Yen HH, Chang CY, Lien WC, Huang SH, Lee SS, Wang L, Wang HD. Adipose-derived stem cell-incubated HA-rich sponge matrix implant modulates oxidative stress to enhance VEGF and TGF-β secretions for extracellular matrix reconstruction in vivo. Oxid Med Cell Longev. 2022;17(2022):9355692.


    Google Scholar
     

  • Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells. 2009;27:250–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014;5(1):7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Y, Cui M, Qu J, Wang X, Kwon SH, Barrera J, Elvassore N, Gurtner GC. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 2020;108:56–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater. 2020;108(2):555–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, Gao SAY, Guo L, Creagh-Flynn J, Zhou D, Greiser U, Dong Y, Wang F, Tai H, Liu W, Wang W, Wang W. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018;75:63–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, Mineda K, Wu SH, Mashiko T, Doi K, Kuno S, Kinoshita K, Kanayama K, Asahi R, Sunaga A, Yoshimura K. An injectable non-cross-linked hyaluronic-acid gel containing therapeutic spheroids of human adipose-derived stem cells. Sci Rep. 2017;7(1):1548.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Silva LP, Santos TC, Rodrigues DB, Pirraco RP, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing. J Invest Dermatol. 2017;137(7):1541–51.

    Article 
    PubMed 

    Google Scholar
     

  • Wu YY, Jiao YP, Xiao LL, Li MM, Liu HW, Li SH, Liao X, Chen YT, Li JX, Zhang Y. Experimental study on effects of adipose-derived stem cell-seeded silk fibroin chitosan film on wound healing of a diabetic rat model. Ann Plast Surg. 2018;80(5):572–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu SH, Hsieh PS. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen. 2015;23(1):57–64.

    Article 
    PubMed 

    Google Scholar
     

  • Shen T, Pan ZG, Zhou X, Hong CY. Accelerated healing of diabetic wound using artificial dermis constructed with adipose stem cells and poly (L-glutamic acid)/chitosan scaffold. Chin Med J (Engl). 2013;126(8):1498–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han TT, Toutounji S, Amsden BG, Flynn LE. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials. 2015;72:125–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, Flynn LE. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials. 2013;34(13):3290–302. https://doi.org/10.1016/j.biomaterials.2013.01.056.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhang B, Shu J, Wang H, Han Y, Zeng Q, Chen Y, Xi J, Tao R, Pei X, Yue W, Han Y. Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing. J Biomed Mater Res A. 2020;3:70005.


    Google Scholar
     

  • Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg. 2012;69:656–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie C, Zhang G, Yang D, Liu T, Liu D, Xu J, Zhang J. Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med. 2015;9(3):224–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oryan A, Alemzadeh E, Mohammadi AA, Moshiri A. Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skin tissue-engineering in a rat burn wound model. Cell Tissue Res. 2019;377(2):215–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aziz J, Kassim NLA, Kasim NHA, Haque N, Rahman MT. Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells. BMC Complement Altern Med. 2015;15:215.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potu BK, Bhat KM, Rao MS, Nampurath GK, Chamallamudi MR, Nayak SR, Muttigi MS. Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics. 2009;64:993–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y-L, Wang Z-L, Fan Z-X, Wu M-J, Zhang Y, Ding W, Huang Y-Z, Xie H-Q. Human adipose-derived stem cell-loaded small intestinal submucosa as a bioactive wound dressing for the treatment of diabetic wounds in rats. Biomater Adv. 2022;136: 212793.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Kong B, Zhu Y, Zhao Y. Bioactive fish scale scaffolds with MSCs-loading for skin flap regeneration. Adv Sci. 2022;9: e2201226.

    Article 

    Google Scholar
     

  • Zomer HD, Jeremias TDS, Ratner B, Trentin AG. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy. 2020;22:247–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Q, Sun H, Yue Z, Yu C, Jiang L, Dong X, Yao M, Shi M, Liang L, Wan Y, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing. Adv Health Mater. 2022;12:e2202309.

    Article 

    Google Scholar
     

  • Boddupalli A, Zhu L, Bratlie KM. Methods for implant acceptance and wound healing: material selection and implant location modulate macrophage and fibroblast phenotypes. Adv Health Mater. 2016;5:2575–94.

    Article 
    CAS 

    Google Scholar
     

  • Boersema GS, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. BioResearch Open Access. 2016;5:6–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials. 2013;34:4439–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartneck M, Schulte VA, Paul NE, Diez M, Lensen MC, Zwadlo-Klarwasser G. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 2010;6:3864–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junge K, Binnebösel M, Von Trotha KT, Rosch R, Klinge U, Neumann UP, Jansen PL. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbeck’s Arch Surg. 2011;397:255–70.

    Article 

    Google Scholar
     

  • Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann Biomed Eng. 2014;42:1508–16.

    Article 
    PubMed 

    Google Scholar
     

  • Horii T, Tsujimoto H, Hagiwara A, Isogai N, Sueyoshi Y, Oe Y, Kageyama S, Yoshida T, Kobayashi K, Minato H, et al. Effects of fiber diameter and spacing size of an artificial scaffold on the in vivo cellular response and tissue remodeling. ACS Appl Bio Mater. 2021;4:6924–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Shi H, Zhang N, Hu L, Jing W, Pan J. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Cell Prolif. 2020;53: e12907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xuan X, Zhou Y, Chen A, Zheng S, An Y, He H, Huang W, Chen Y, Yang Y, Li S, et al. Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing. J Mater Chem B. 2019;8:1359–70.

    Article 
    PubMed 

    Google Scholar
     

  • Moura LI, Dias AM, Suesca E, Casadiegos S, Leal EC, Fontanilla MR, Carvalho L, de Sousa HC, Carvalho E. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014;1842:32–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Zhang Q, Li Y, Song W, Chen A, Liu J, Xuan X. Collagen sponge prolongs taurine release for improved wound healing through inflammation inhibition and proliferation stimulation. Ann Transl Med. 2021;9:1010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Ma Y, Bao Y, Liu Z, Chen L, Dai F, Li Z. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int J Biol Macromol. 2021;31(183):68–78.

    Article 

    Google Scholar
     

  • Kaisang L, Siyu W, Lijun F, Daoyan P, Xian CJ, Jie S. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. J Surg Res. 2017;217:63–74.

    Article 
    PubMed 

    Google Scholar
     

  • Cao Y, Shi X, Zhao X, Chen B, Li X, Li Y, Chen Y, Chen C, Lu H, Liu J. Acellular dermal matrix decorated with collagen-affinity peptide accelerate diabetic wound healing through sustained releasing Histatin-1 mediated promotion of angiogenesis. Int J Pharm. 2022;624:122017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishiwaki K, Aoki S, Kinoshita M, Kiyosawa T, Suematsu Y, Takeoka S, Fujie T. In situ transplantation of adipose tissue-derived stem cells organized on porous polymer nanosheets for murine skin defects. J Biomed Mater Res B Appl Biomater. 2019;107(5):1363–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burmeister DM, Roy DC, Becerra SC, Natesan S, Christy RJ. In situ delivery of fibrin-based hydrogels prevents contraction and reduces inflammation. J Burn Care Res. 2018;39(1):40–53.

    PubMed 

    Google Scholar
     



  • Source link