Scientific Papers

Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction | Stem Cell Research & Therapy


  • Mensah GA, Fuster V, Murray CJL, Roth GA. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82:2350.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72:2231.

    Article 
    PubMed 

    Google Scholar
     

  • Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D, Cheng K. Cardiac cell therapy for heart repair: should the cells be left out? Cells. 2021;10:

  • Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res. 2023;10:18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng X, Du J, Wang Y. Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis. Biomed Pharmacother. 2024;170: 116079.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keykhaei M, Ashraf H, Rashedi S, Farrokhpour H, Heidari B, Zokaei S, et al. Differences in the 2020 ESC versus 2015 ESC and 2014 ACC/AHA guidelines on the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Curr Atheroscler Rep. 2021;23:77.

    Article 
    PubMed 

    Google Scholar
     

  • Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79: e21.

    Article 
    PubMed 

    Google Scholar
     

  • Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15:585.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Z, Cai Y, Chen Y, Jin Q, Zhang Z, Zhang L, et al. Ultrasound-targeted microbubble destruction promotes PDGF-primed bone mesenchymal stem cell transplantation for myocardial protection in acute Myocardial Infarction in rats. J Nanobiotechnol. 2023;21:481.

    Article 
    CAS 

    Google Scholar
     

  • Shao L, Shen Y, Ren C, Kobayashi S, Asahara T, Yang J. Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Discov. 2022;8:452.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Hou H, Li M, Yu X, Zuo H, Gao J, et al. CD73(+) mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front Cell Dev Biol. 2021;9: 637239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol. 2021;12: 664457.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev. 2023;89: 101980.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Hu D, Chen G, Zheng D, Li S, Lin Y, et al. Adropin-based dual treatment enhances the therapeutic potential of mesenchymal stem cells in rat myocardial infarction. Cell Death Dis. 2021;12:505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raziyeva K, Smagulova A, Kim Y, Smagul S, Nurkesh A, Saparov A. Preconditioned and genetically modified stem cells for myocardial infarction treatment. Int J Mol Sci. 2020;21

  • Wu T, Zhang X, Liu Y, Cui C, Sun Y, Liu W. Wet adhesive hydrogel cardiac patch loaded with anti-oxidative, autophagy-regulating molecule capsules and MSCs for restoring infarcted myocardium. Bioact Mater. 2023;21:20.

    CAS 
    PubMed 

    Google Scholar
     

  • Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 2010;21:1513.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SW, Lee DW, Yu LH, Zhang HZ, Kim CE, Kim JM, et al. Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res. 2012;95:495.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng X, Li J, Yu M, Yang J, Zheng M, Zhang J, et al. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction. J Cell Physiol. 2018;233:587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao H, Cottin Y, Chagué F, Maza M, Bichat F, Zeller M, et al. Diagnostic and prognostic impact of new pathophysiology-based categorization of type 1 and type 2 myocardial infarction: data from the French RICO survey. Am Heart J. 2023;266:86.

    Article 
    PubMed 

    Google Scholar
     

  • Stefanadis C, Antoniou CK, Tsiachris D,Pietri P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. 2017;6

  • Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res. 2019;115:1178.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol. 2016;7:113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773.

    Article 
    PubMed 

    Google Scholar
     

  • Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, et al. Fibroblasts in heart scar tissue directly regulate cardiac excitability and arrhythmogenesis. Science. 2023;381:1480.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, et al. Regenerative strategies for the consequences of myocardial infarction: chronological indication and upcoming visions. Biomed Pharmacother. 2022;146: 112584.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109:923.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18: e264.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, et al. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci. 2020;10:69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res. 2017;121:1192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, et al. Mesenchymal stem cell immunomodulation: a novel intervention mechanism in cardiovascular disease. Front Cell Dev Biol. 2021;9: 742088.

    Article 
    PubMed 

    Google Scholar
     

  • Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther. 2017;8:242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen X, Pan B, Zhou H, Liu L, Lv T, Zhu J, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J Biomed Sci. 2017;24:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran T, Cruz C, Chan A, Awad S, Rajasingh J, Deth R, et al. Mesenchymal stem cell-derived long noncoding rnas in cardiac injury and repair. Cells. 2023;12:2268.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front Immunol. 2020;11: 591065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53: e12712.

    Article 
    PubMed 

    Google Scholar
     

  • Figueroa FE, Carrión F, Villanueva S, Khoury M. Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res. 2012;45:269.

    Article 
    PubMed 

    Google Scholar
     

  • Vadivel S, Vincent P, Sekaran S, Visaga Ambi S, Muralidar S, Selvaraj V, et al. Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sci. 2020;250: 117582.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96:1127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pankajakshan D, Agrawal DK. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J Biomed Technol Res. 2014;1:

  • Shafei AES, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mechanistic effects of mesenchymal and hematopoietic stem cells: New therapeutic targets in myocardial infarction. J Cell Biochem. 2018;119:5274.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KA, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis. 2016;21:252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazir A, Fox K, Westaby J, Evans MJ, Westaby S. Can we remove scar and fibrosis from adult human myocardium? Eur Heart J. 2019;40:960.

    Article 
    PubMed 

    Google Scholar
     

  • Tu C, Mezynski R, Wu JC. Improving the engraftment and integration of cell transplantation for cardiac regeneration. Cardiovasc Res. 2020;116:473.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol. 2023;11:1245872.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bumroongthai K, Kavanagh DPJ, Genever P, Kalia N. Improving vasculoprotective effects of MSCs in coronary microvessels – benefits of 3D culture, sub-populations and heparin. Front Immunol. 2023;14:1257497.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Lu Y, Mao Y, Yu Y, Wu T, Zhao W, et al. IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats. Stem Cell Res Ther. 2022;13:333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn JY, Cho HJ, Kang HJ, Kim TS, Kim MH, Chung JH, et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol. 2008;51:933.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther. 2022;13:289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 2020;11:373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Liang X, Liu B, Hong Y, He H, Shen Y, et al. Downregulation of ALKBH5 rejuvenates aged human mesenchymal stem cells and enhances their therapeutic efficacy in myocardial infarction. Faseb J. 2023;37: e23294.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramesh S, Govarthanan K, Ostrovidov S, Zhang H, Hu Q, Camci-Unal G, et al. Cardiac differentiation of mesenchymal stem cells: impact of biological and chemical inducers. Stem Cell Rev Rep. 2021;17:1343.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM, Bokara KK. Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity. Stem Cell Rev Rep. 2017;13:725.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips MI, Tang YL. Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev. 2008;60:160.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Liu F, Hu W, Qian Y, Xu D, Gao C, et al. FAIM enhances the efficacy of mesenchymal stem cell transplantation by inhibiting JNK-induced c-FLIP ubiquitination and degradation. Stem Cells Int. 2022;2022:3705637.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang Q, Liao Y, Chao H, Huang W, Liu J, Chen H, et al. ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model. Stem Cell Res Ther. 2018;9:51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, Xu X, Guo Y, Lin C, Xu X, Zhang F, et al. Mesenchymal stromal cells overexpressing farnesoid x receptor exert cardioprotective effects against acute ischemic heart injury by binding endogenous bile acids. Adv Sci (Weinh). 2022;9: e2200431.

    Article 
    PubMed 

    Google Scholar
     

  • Tao Y, Liu Q, Wu R, Xiao C, Ni C, Wang K, et al. Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction. Mol Ther Nucleic Acids. 2022;27:412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Zhao C, Jiang G, Hu B, Zheng H, Hong Y, et al. Apelin rejuvenates aged human mesenchymal stem cells by regulating autophagy and improves cardiac protection after infarction. Front Cell Dev Biol. 2021;9: 628463.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu K, Zeng Z, Cheng S, Hu W, Gao C, Liu F, et al. TPP1 enhances the therapeutic effects of transplanted aged mesenchymal stem cells in infarcted hearts via the MRE11/AKT pathway. Front Cell Dev Biol. 2020;8: 588023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Zhang R, Su F, Dai L, Wang J, Cui J, et al. FoxC1-induced vascular niche improves survival and myocardial repair of mesenchymal stem cells in infarcted hearts. Oxid Med Cell Longev. 2020;2020:7865395.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-El-Rub E, Sareen N, Lester Sequiera G, Ammar HI, Yan W, ShamsEldeen AM, et al. Hypoxia-induced increase in Sug1 leads to poor post-transplantation survival of allogeneic mesenchymal stem cells. Faseb j. 2020;34:12860.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng J, Zhang N, Wang Y, Yang C, Wang Y, Xin C, et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther. 2020;11:228.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kizilay Mancini O, Huynh DN, Menard L, Shum-Tim D, Ong H, Marleau S, et al. Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc Res. 2021;117:756.

    Article 
    PubMed 

    Google Scholar
     

  • Hong Y, He H, Jiang G, Zhang H, Tao W, Ding Y, et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell. 2020;19: e13128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Yang Z, Meng Q, Chen Y, Shao L, Li J, et al. Downregulation of microRNA-206 alleviates the sublethal oxidative stress-induced premature senescence and dysfunction in mesenchymal stem cells via targeting alpl. Oxid Med Cell Longev. 2020;2020:7242836.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng R, Liu Y, He H, Zhang H, Zhao C, Cui Z, et al. Haemin pre-treatment augments the cardiac protection of mesenchymal stem cells by inhibiting mitochondrial fission and improving survival. J Cell Mol Med. 2020;24:431.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhu W, He H, Fan B, Deng R, Hong Y, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging (Albany NY). 2019;11:12641.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preda MB, Neculachi CA, Fenyo IM, Vacaru A-M, Publik MA, Simionescu M, et al. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis. 2021;12:566.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Y, Liu S, Wang L, Yang H, Tai C, Ling L, et al. Individual heterogeneity screened umbilical cord-derived mesenchymal stromal cells with high Treg promotion demonstrate improved recovery of mouse liver fibrosis. Stem Cell Res Ther. 2021;12:359.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther. 2023;14:260.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Y, Liu W, Liu S, Wang L, Mu D, Cui Y, et al. The quality evaluation system establishment of mesenchymal stromal cells for cell-based therapy products. Stem Cell Res Ther. 2020;11:176.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14:840.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao T, Zhang D, Millard RW, Ashraf M, Wang Y. Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. Am J Physiol Heart Circ Physiol. 2009;296:H976.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng J, Han Y, Yan C, Tian X, Tao J, Kang J, et al. Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis. 2010;15:463.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen B, Chen X, Liu C, Li J, Liu F, Huang Y. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed Pharmacother. 2018;108:508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells. 2005;19:402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfaro MP, Vincent A, Saraswati S, Thorne CA, Hong CC, Lee E, et al. sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem. 2010;285:35645.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao SL, Zhang YJ, Li MH, Zhang XL, Chen SL. Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction. Stem Cell Res Ther. 2014;5:37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, et al. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol. 2010;299:H1772.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue X, Liu Y, Zhang J, Liu T, Yang Z, Wang H. Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells International. 2015;2015: 176409.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng B, Chen H, Zhu C, Ren X, Lin G, Cao F. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance. Eur J Cardiothorac Surg. 2008;34:850.

    Article 
    PubMed 

    Google Scholar
     

  • Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res. 2010;106:1753.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu D, Zhang XL, Xie J, Yuan HH, Wang K, Huang W, et al. Intracoronary transplantation of mesenchymal stem cells with overexpressed integrin-linked kinase improves cardiac function in porcine myocardial infarction. Sci Rep. 2016;6:19155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen H, Cui G, Li Y, Ye W, Sun Y, Zhang Z, et al. Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther. 2019;10:17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Deng Z, Li A, Li R, Huang W, Cui J, et al. β-Catenin promotes long-term survival and angiogenesis of peripheral blood mesenchymal stem cells via the Oct4 signaling pathway. Exp Mol Med. 2022;54:1434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Lin Q, Zhu J, Li X, Fu Y, Zou X, et al. The caspase-8 shRNA-modified mesenchymal stem cells improve the function of infarcted heart. Mol Cell Biochem. 2014;397:7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee CY, Shin S, Lee J, Seo HH, Lim KH, Kim H, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart. Int J Mol Sci. 2016;17

  • Chen Y, Zhao Y, Chen W, Xie L, Zhao Z-A, Yang J, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8:268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Wu R, Jiang Z, Chen J, Nan J, Su S, et al. Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Disease. 2018;9:556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu J, Chen X, Liu X, Xu D, Yang H, Zeng C, et al. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res Ther. 2020;11:541.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banimohamad-Shotorbani B, Kahroba H, Sadeghzadeh H, Wilson DM, Maadi H, Samadi N, et al. DNA damage repair response in mesenchymal stromal cells: from cellular senescence and aging to apoptosis and differentiation ability. Ageing Res Rev. 2020;62: 101125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Akiyama K, Mun AY, Tagashira R, Zou T, Matsunaga N, et al. Age-related effects on msc immunomodulation, macrophage polarization, apoptosis, and bone regeneration correlate with IL-38 expression. Int J Mol Sci. 2024;25

  • Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci. 2016;17

  • Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med. 2022;11:356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Liu S, Wang Y, Lv K, Lou P, Zhou P, et al. The mitochondria-paraspeckle axis regulates the survival of transplanted stem cells under oxidative stress conditions. Theranostics. 2024;14:1517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang DY, Zhang CF, Fu BC, Sun L, Wang XQ, Chen W, et al. Sirtuin3 protects aged human mesenchymal stem cells against oxidative stress and enhances efficacy of cell therapy for ischaemic heart diseases. J Cell Mol Med. 2018;22:5504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong J, Zhang Z, Huang H, Mo P, Cheng C, Liu J, et al. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther. 2018;9:151.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang X, Ding Y, Lin F, Zhang Y, Zhou X, Meng Q, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. Faseb j. 2019;33:4559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang M, Wen T, Chen H, Deng J, Yang C, Zhang Z. Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy. Stem Cell Res Ther. 2018;9:284.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004;287:H2670.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shyu K-G, Wang B-W, Hung H-F, Chang C-C, Shih DT-B. Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. J Biomed Sci. 2006;13:47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25:1168.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang SD, Lu FL, Xu XY, Liu XH, Zhao XX, Zhao BZ, et al. Transplantation of angiogenin-overexpressing mesenchymal stem cells synergistically augments cardiac function in a porcine model of chronic ischemia. J Thorac Cardiovasc Surg. 2006;132:1329.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang S, Haider H, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res. 2006;99:776.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shujia J, Haider HK, Idris NM, Lu G, Ashraf M. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res. 2008;77:525.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Fan GC, Zhou X, Zhao T, Pasha Z, Xu M, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008;44:281.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res. 2011;108:478.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Xia R, Li Z, Zhang L, Xia C, Ai H, et al. Mesenchymal stem cells combined with hepatocyte growth factor therapy for attenuating ischaemic myocardial fibrosis: assessment using multimodal molecular imaging. Sci Rep. 2016;6:33700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Zhu J, Zhang N, Liu Q, Wang Y, Hu X, et al. GDF11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial infarction via YME1L-mediated OPA1 processing. Stem Cells Transl Med. 2020;9:1257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Chen H, Zhu W, Chen H, Hu X, Jiang Z, et al. Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myocardial infarction model. J Heart Lung Transplant. 2014;33:1083.

    Article 
    PubMed 

    Google Scholar
     

  • Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, et al. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol. 2015;201:517.

    Article 
    PubMed 

    Google Scholar
     

  • Gómez-Mauricio G, Moscoso I, Martín-Cancho MF, Crisóstomo V, Prat-Vidal C, Báez-Díaz C, et al. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther. 2016;7:94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Zhao L, Wang J, Chen N, Yan J, Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis. 2017;8: e2548.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Wang J, Wang P, Deng Z, Cui J, Huang W, et al. Oct4 cooperates with c-Myc to improve mesenchymal-to-endothelial transition and myocardial repair of cardiac-resident mesenchymal stem cells. Stem Cell Res Ther. 2022;13:445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood. 2004;104:3581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukuda K, Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int. 2005;68:1940.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010;106:1613.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grauss RW, van Tuyn J, Steendijk P, Winter EM, Pijnappels DA, Hogers B, et al. Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells. 2008;26:1083.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SY, Ham O, Cha MJ, Song BW, Choi E, Kim IK, et al. The promotion of cardiogenic differentiation of hMSCs by targeting epidermal growth factor receptor using microRNA-133a. Biomaterials. 2013;34:92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neshati V, Mollazadeh S, Fazly Bazzaz BS, de Vries AA, Mojarrad M, Naderi-Meshkin H, et al. Cardiomyogenic differentiation of human adipose-derived mesenchymal stem cells transduced with Tbx20-encoding lentiviral vectors. J Cell Biochem. 2018;119:6146.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, Qin B, Fan X, Li Y, Wang Y, Yuan W, et al. Novel biphasic mechanism of the canonical Wnt signalling component PYGO2 promotes cardiomyocyte differentiation from hUC-MSCs. Cell Tissue Res. 2023;393:163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77:134.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russo V, Young S, Hamilton A, Amsden BG, Flynn LE. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials. 2014;35:3956.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X, et al. Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol. 2013;108:333.

    Article 
    PubMed 

    Google Scholar
     

  • Xu J, Xiong YY, Li Q, Hu MJ, Huang PS, Xu JY, et al. Optimization of timing and times for administration of atorvastatin-pretreated mesenchymal stem cells in a preclinical model of acute myocardial infarction. Stem Cells Transl Med. 2019;8:1068.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li HM, Liu L, Mei X, Chen H, Liu Z, Zhao X. Overexpression of inducible nitric oxide synthase impairs the survival of bone marrow stem cells transplanted into rat infarcted myocardium. Life Sci. 2014;106:50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, et al. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways. Free Radic Biol Med. 2014;77:363.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Liang D, Gao X, Zhao C, Qin X, Xu Y, et al. Selective inhibition of inositol hexakisphosphate kinases (IP6Ks) enhances mesenchymal stem cell engraftment and improves therapeutic efficacy for myocardial infarction. Basic Res Cardiol. 2014;109:417.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang GW, Gu TX, Sun XJ, Wang C, Qi X, Wang XB, et al. Edaravone promotes activation of resident cardiac stem cells by transplanted mesenchymal stem cells in a rat myocardial infarction model. J Thorac Cardiovasc Surg. 2016;152:570.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han XJ, Li H, Liu CB, Luo ZR, Wang QL, Mou FF, et al. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment. Life Sci. 2019;233: 116740.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Zhang D, Millard RW, Wang T, Zhao T, Fan GC, et al. Gene manipulated peritoneal cell patch repairs infarcted myocardium. J Mol Cell Cardiol. 2010;48:702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, et al. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials. 2010;31:7012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maureira P, Marie PY, Yu F, Poussier S, Liu Y, Groubatch F, et al. Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J Biomed Sci. 2012;19:93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kai D, Wang QL, Wang HJ, Prabhakaran MP, Zhang Y, Tan YZ, et al. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater. 2014;10:2727.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci. 2014;21:100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Li L, Huo D, Li Y, Wu Y, Zeng L, et al. A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly. Biomaterials. 2017;127:117.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Y, Yang L, Feng LF, Yue ZW, Zhao NH, Li Z, et al. IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res Ther. 2020;11:136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo R, Wan F, Morimatsu M, Xu Q, Feng T, Yang H, et al. Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material. Bioact Mater. 2021;6:2999.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YS, Lim KS, Oh JE, Yoon AR, Joo WS, Kim HS, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu S, Yu C, Liu N, Zhao M, Chen Z, Liu J, et al. Injectable conductive gelatin methacrylate/oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment. Bioact Mater. 2022;13:119.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu K, Lai H, Guo C, Li J, Wang Y, Wang L, et al. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair. Int J Nanomedicine. 2014;9:5203.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu K, Wu M, Lai H, Guo C, Li J, Wang Y, et al. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials. 2016;74:188.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80:154.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai H, Wu FY, Wang QL, Xu P, Mou FF, Shao SJ, et al. Self-assembling peptide modified with QHREDGS as a novel delivery system for mesenchymal stem cell transplantation after myocardial infarction. Faseb j. 2019;33:8306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311:62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suncion VY, Ghersin E, Fishman JE, Zambrano JP, Karantalis V, Mandel N, et al. Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ Res. 2014;114:1292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT study). Circ Res. 2017;121:1279.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao LR, Pei XT, Ding QA, Chen Y, Zhang NK, Chen HY, et al. A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. Int J Cardiol. 2013;168:3191.

    Article 
    PubMed 

    Google Scholar
     

  • Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attar A, Farjoud Kouhanjani M, Hessami K, Vosough M, Kojuri J, Ramzi M, et al. Effect of once versus twice intracoronary injection of allogeneic-derived mesenchymal stromal cells after acute myocardial infarction: BOOSTER-TAHA7 randomized clinical trial. Stem Cell Res Ther. 2023;14:264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6:eaay6994.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao LC, Lin YN, Shyu WC, Ho M, Lu CR, Chang SS, et al. First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction. Front Cardiovasc Med. 2022;9: 961920.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Can A, Ulus AT, Cinar O, Topal Celikkan F, Simsek E, Akyol M, et al. Human umbilical cord mesenchymal stromal cell transplantation in myocardial ischemia (HUC-HEART Trial). A study protocol of a phase 1/2, controlled and randomized trial in combination with coronary artery bypass grafting. Stem Cell Rev Rep. 2015;11:752.

    Article 
    PubMed 

    Google Scholar
     

  • Ulus AT, Mungan C, Kurtoglu M, Celikkan FT, Akyol M, Sucu M, et al. Intramyocardial transplantation of umbilical cord mesenchymal stromal cells in chronic ischemic cardiomyopathy: a controlled, randomized clinical trial (HUC-HEART Trial). Int J Stem Cells. 2020;13:364.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports. 2021;16:1662.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci. 2015;11:238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy. 2019;21:497.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan SJO, Floriano JF, Nicastro L, Emanueli C,Catapano F. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules. 2020;10:

  • Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells International. 2017;2017:6305295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, et al. Human umbilical cord blood–derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol. 2021;37:51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23:7617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang N, Zhu J, Ma Q, Zhao Y, Wang Y, Hu X, et al. Exosomes derived from human umbilical cord MSCs rejuvenate aged MSCs and enhance their functions for myocardial repair. Stem Cell Res Ther. 2020;11:273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu T, Xu Q, Chen X, Deng X, Chen N, Kou MT, et al. Biomimetic nanomaterials in myocardial infarction treatment: Harnessing bionic strategies for advanced therapeutics. Materials Today Bio. 2024;25: 100957.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 2020;116:353.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, et al. Sequential transplantation of exosomes and mesenchymal stem cells pretreated with a combination of hypoxia and Tongxinluo efficiently facilitates cardiac repair. Stem Cell Res Ther. 2022;13:63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7: e008737.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7:2920.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6:eaaz0952.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao C, Wu W, Tang H, Jia X, Tang J, Ruan X, et al. Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated repair of myocardial infarction injury. Biomaterials. 2020;257: 120256.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao J, Huang K, Zhu D, Chen T, Jiang Y, Zhang J, et al. A minimally invasive exosome spray repairs heart after myocardial infarction. ACS Nano. 2021;15:11099.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, et al. Restoring cardiac functions after myocardial infarction–ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13:56892.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Zhang L, Sun Z, Chi B, Zou A, Mao L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosome-encapsulated arginine-glycine-aspartate (RGD) hydrogels boost therapeutic efficacy of cardiac repair after myocardial infarction. Mater Today Bio. 2021;12: 100171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Ning X, Zhao Q, Zhang Z, Zhang C, Xie M, et al. Islet-1 mesenchymal stem cells-derived exosome-incorporated angiogenin-1 hydrogel for enhanced acute myocardial infarction therapy. ACS Appl Mater Interfaces. 2022;14:36289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan J, Yang H, Liu C, Shao L, Zhang H, Lu K, et al. Microneedle patch loaded with exosomes containing microRNA-29b prevents cardiac fibrosis after myocardial infarction. Adv Healthc Mater. 2023;12: e2202959.

    Article 
    PubMed 

    Google Scholar
     

  • Ping P, Guan S, Ning C, Yang T, Zhao Y, Zhang P, et al. Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction. Nanomed Nanotechnol Biol Med. 2023;54: 102708.

    Article 
    CAS 

    Google Scholar
     

  • Yan C, Wang X, Wang Q, Li H, Song H, Zhou J, et al. A novel conductive polypyrrole-chitosan hydrogel containing human endometrial mesenchymal stem cell-derived exosomes facilitated sustained release for cardiac repair. Adv Healthc Mater. 2024;e2304207.

  • Pan Y, Wu W, Jiang X, Liu Y. Mesenchymal stem cell-derived exosomes in cardiovascular and cerebrovascular diseases: from mechanisms to therapy. Biomed Pharmacother. 2023;163: 114817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link