Scientific Papers

Barcoding of Italian mosquitoes (BITMO): generation and validation of DNA barcoding reference libraries for native and alien species of Culicidae | Parasites & Vectors


  • Beebe NW. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology. 2018;145:622–33.

    Article 
    PubMed 

    Google Scholar
     

  • Harbach RE. Mosquito taxonomic inventory. 2023. http://mosquitotaxonomic-inventory.info/. Accessed 20 Jan 2024.

  • Yee DA, Bermond CD, Reyes-Torres LJ, Fijman NS, Scavo NA, Nelsen J, et al. Robust network stability of mosquitoes and human pathogens of medical importance. Parasit Vectors. 2022;15:1–9.

  • Severini F, Toma L, Di Luca M. Zanzare in Italia raccolta, identificazione e conservazione delle specie più comuni. Istituto Superiore Sanità: Rome; 2022.


    Google Scholar
     

  • Negri A, Arnoldi I, Brilli M, Bandi C, Gabrieli P, Epis S. Evidence for the spread of the alien species Aedes koreicus in the Lombardy region Italy. Parasit Vectors. 2021;14:1–6.

    Article 

    Google Scholar
     

  • Montarsi F, Martini S, Michelutti A, Da Rold G, Mazzucato M, Qualizza D, et al. The invasive mosquito Aedes japonicus japonicus is spreading in northeastern Italy. Parasit Vectors. 2019;12:1–8.

    Article 

    Google Scholar
     

  • Schneider J, Valentini A, Dejean T, Montarsi F, Taberlet P, Glaizot O, et al. Detection of invasive mosquito vectors using environmental DNA (eDNA) from water samples. PLoS ONE. 2016;11:e0162493.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lühken R, Brattig N, Becker N. Introduction of invasive mosquito species into Europe and prospects for arbovirus transmission and vector control in an era of globalization. Infect Dis Poverty. 2023;12:1–15.

    Article 

    Google Scholar
     

  • Angelini P, Macini P, Finarelli AC, Pol C, Venturelli C, Bellini R, et al. Chikungunya epidemic outbreak in Emilia-Romagna (Italy) during summer 2007. Parassitologia. 2008;50:97–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Lindh E, Argentini C, Remoli ME, Fortuna C, Faggioni G, Benedetti E, et al. The Italian 2017 outbreak chikungunya virus belongs to an emerging Aedes albopictus-adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect Dis. 2019;6:ofy321.

    Article 
    PubMed 

    Google Scholar
     

  • Lazzarini L, Barzon L, Foglia F, Manfrin V, Pacenti M, Pavan G, et al. First autochthonous dengue outbreak in Italy. Euro Surveill. 2020;25:36.


    Google Scholar
     

  • Cassaniti I, Ferrari G, Senatore S, Rossetti E, Defilippo F, Maffeo M, et al. Preliminary results on an autochthonous dengue outbreak in Lombardy Region Italy. Euro Surveill. 2023;28:37.

    Article 

    Google Scholar
     

  • De Carli G, Carletti F, Spaziante M, Gruber CEM, Rueca M, Spezia PG, et al. Outbreaks of autochthonous Dengue in Lazio region, Italy, August to September 2023 preliminary investigation. Euro Surveill. 2023;28:44.

    Article 

    Google Scholar
     

  • Marrama Rakotoarivony L, Schaffner F. ECDC guidelines for the surveillance of invasive mosquitoes in Europe. Euro Surveill. 2012;17:20265.

    CAS 
    PubMed 

    Google Scholar
     

  • Boerlijst SP, Trimbos KB, Van der Beek JG, Dijkstra KDB, Van der Hoorn BB, Schrama M. Field evaluation of dna based biodiversity monitoring of caribbean mosquitoes. Front Ecol Evol. 2019;7:240.

    Article 

    Google Scholar
     

  • Madeira S, Duarte A, Boinas F, Costa OH. A DNA barcode reference library of Portuguese mosquitoes. Zoonoses Public Health. 2021;68:926–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo A, Oteo JA. Surveillance of mosquitoes (Diptera, Culicidae) in a northern central region of Spain: implications for the medical community. Front Vet Sci. 2019;6:438636.

    Article 

    Google Scholar
     

  • Alquezar DE, Hemmerter S, Cooper RD, Beebe NW. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol Biol. 2010;10:1–12.

    Article 

    Google Scholar
     

  • Calzolari M, Desiato R, Albieri A, Bellavia V, Bertola M, Bonilauri P, et al. Mosquitoes of the Maculipennis complex in Northern Italy. Sci Rep. 2021;11:1–12.

    Article 

    Google Scholar
     

  • Beebe NW, Maung J, van den Hurk AF, Ellis JT, Cooper RD. Ribosomal DNA spacer genotypes of the Anopheles bancroftii group (Diptera: Culicidae) from Australia and Papua New Guinea. Insect Mol Biol. 2001;10:407–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270:313–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar NP, Rajavel AR, Natarajan R, Jambulingam P. DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol. 2007;44:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, et al. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour. 2015;15:449–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza MS. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding. PLoS ONE. 2014;9:e97268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weeraratne TC, Surendran SN, Parakrama Karunaratne SHP. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka. Parasit Vectors. 2018;11:1–10.

    Article 

    Google Scholar
     

  • Talaga S, Leroy C, Guidez A, Dusfour I, Girod R, Dejean A, et al. DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding. PLoS ONE. 2017;12:e0176993.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, et al. Identifying the main mosquito species in China based on DNA barcoding. PLoS ONE. 2012;7:e47051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernández-Triana LM, Brugman VA, Nikolova NI, Ruiz-Arrondo I, Barrero E, Thorne L, et al. DNA barcoding of British mosquitoes (Diptera, Culicidae) to support species identification, discovery of cryptic genetic diversity and monitoring invasive species. Zookeys. 2019;832:57–76.

  • Cywinska A, Hunter FF, Hebert PDN. Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol. 2006;20:413–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adeniran AA, Hernández-Triana LM, Ortega-Morales AI, Garza-Hernández JA, de la Cruz-Ramos J, Chan-Chable RJ, et al. Identification of mosquitoes (Diptera: Culicidae) from Mexico State, Mexico using morphology and COI DNA barcoding. Acta Trop. 2021;213:105730.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bušić N, Kučinić M, Merdić E, Bruvo-Mađarić B. Diversity of mosquito fauna (Diptera, Culicidae) in higher-altitude regions of Croatia. J Vector Ecol. 2021;46:65–75.

    Article 
    PubMed 

    Google Scholar
     

  • Bušić N, Klobučar A, Landeka N, Žitko T, Vignjević G, Turić N, et al. A DNA barcode reference library of Croatian mosquitoes (Diptera: Culicidae): implications for identification and delimitation of species, with notes on the distribution of potential vector species. Parasit Vectors. 2024;17:216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirik H, Tummeleht L, Kurina O. Rediscovering the mosquito fauna (Diptera: Culicidae) of Estonia: an annotated checklist with distribution maps and DNA evidence. Zootaxa. 2022;5094:261–87.

    Article 
    PubMed 

    Google Scholar
     

  • Chaiphongpachara T, Changbunjong T, Laojun S, Nutepsu T, Suwandittakul N, Kuntawong K, et al. Mitochondrial DNA barcoding of mosquito species (Diptera: Culicidae) in Thailand. PLoS ONE. 2022;17:e0275090.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moraes Zenker M, Portella TP, Pessoa FAC, Bengtsson-Palme J, Galetti PM. Low coverage of species constrains the use of DNA barcoding to assess mosquito biodiversity. Sci Rep. 2024;14:1–11.

    Article 

    Google Scholar
     

  • Andújar C, Arribas P, Yu DW, Vogler AP, Emerson BC. Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol Ecol. 2018;27:3968–75.

    Article 
    PubMed 

    Google Scholar
     

  • Yu DW, Ji Yinqiu, Brent CE, Xiaoyang W, Chengxi Y, Chunyan Y, et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol. 2012;3:613–23.

    Article 

    Google Scholar
     

  • Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L, Sims DW, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol Evol. 2019;10:1985–2001.

    Article 

    Google Scholar
     

  • Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett. 2014;10:9.

    Article 

    Google Scholar
     

  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, et al. An In silico approach for the evaluation of DNA barcodes. BMC Genomics. 2010;11:1–10.

    Article 

    Google Scholar
     

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biol Lett. 2008;4:423–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taberlet P, Bonin A, Zinger L, Coissac E. Environmental DNA for biodiversity research and monitoring. Oxford: Oxford University Press; 2018.

    Book 

    Google Scholar
     

  • Ficetola GF, Boyer F, Valentini A, Bonin A, Meyer A, Dejean T, et al. Comparison of markers for the monitoring of freshwater benthic biodiversity through DNA metabarcoding. Mol Ecol. 2021;30:3189–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubinoff D, Cameron S, Will K. Are plant DNA barcodes a search for the Holy Grail? Trends Ecol Evol. 2006;21:1–2.

    Article 
    PubMed 

    Google Scholar
     

  • Clarke LJ, Soubrier J, Weyrich LS, Cooper A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol Ecol Resour. 2014;14:1160–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elbrecht V, Taberlet P, Dejean T, Valentini A, Usseglio-Polatera P, Beisel J-N, et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ. 2016;4:e1966.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012;21:1821–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ficetola GF, Guerrieri A, Cantera I, Bonin A. In silico assessment of 18S rDNA metabarcoding markers for the characterization of nematode communities. PLoS ONE. 2024;19:e0298905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charrier E, Chen R, Thundathil N, Gilleard JS. A set of nematode rRNA cistron databases and a primer assessment tool to enable more flexible and comprehensive metabarcoding. Mol Ecol Resour. 2024;24:e13965.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Nynatten A, Gallage KS, Lujan NK, Mandrak NE, Lovejoy NR. Ichthyoplankton metabarcoding: An efficient tool for early detection of invasive species establishment. Mol Ecol Resour. 2023;23:1319–33.

    Article 
    PubMed 

    Google Scholar
     

  • Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol Ecol Resour. 2019;19:900–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnoldi I, Negri A, Soresinetti L, Brambilla M, Carraretto D, Montarsi F, et al. Assessing the distribution of invasive Asian mosquitoes in Northern Italy and modelling the potential spread of Aedes koreicus in Europe. Acta Trop. 2022;232:106536.

    Article 
    PubMed 

    Google Scholar
     

  • Cameron EC, Wilkerson RC, Mogi M, Miyagi I, Toma T, Kim H-C, et al. Molecular phylogenetics of Aedes japonicus, a disease vector that recently invaded Western Europe, North America, and the Hawaiian islands. J Med Entomol. 2010;47:527–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farajollahi A, Price DC. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. J Am Mosq Control Assoc. 2013;29:203–21.

    Article 
    PubMed 

    Google Scholar
     

  • Romi R, Pontuale G, Sabatinelli G. Le zanzare italiane: generalità e identificazione degli stadi preimaginali (Diptera, Culicidae). Fragm Entomol. 1997;29:1–141.


    Google Scholar
     

  • Severini F, Toma L, Di Luca M, Romi R. Le zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragm Entomol. 2009;41:213–372.

    Article 

    Google Scholar
     

  • Harbach RE, Wilkerson RC. The insupportable validity of mosquito subspecies (Diptera: Culicidae) and their exclusion from culicid classification. Zootaxa. 2023;5303:1–184.

    Article 
    PubMed 

    Google Scholar
     

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Collins FH, Paskewitz SM. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol. 1996;5:1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gouy M, Tannier E, Comte N, Parsons DP. Seaview Version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Methods Mol Biol. 2021;2231:241–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772–772.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.

    Article 
    PubMed 

    Google Scholar
     

  • da Silva AF, Machado LC, de Paula MB, et al. Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Sci Rep. 2020;10:18823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE. 2013;8:e66213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratnasingham S, Hebert PDN. BOLD: the Barcode Of Life Data system. Mol Ecol Notes. 2007;7:355–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Čandek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol Ecol Resour. 2015;15:268–77.

    Article 
    PubMed 

    Google Scholar
     

  • Rozo-Lopez P, Mengual X. Mosquito species (Diptera, Culicidae) in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology. Zookeys. 2015;39:64.


    Google Scholar
     

  • Renaud AK, Savage J, Adamowicz SJ. DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits. BMC Ecol. 2012;12:1–15.

    Article 

    Google Scholar
     

  • Meyer CP, Paulay G. DNA Barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3:e422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson AW, Eberhardt U, Nguyen N, Noffsinger CR, Swenie RA, Loucks JL, et al. Does one size fit all? Variations in the DNA barcode gaps of macrofungal genera. J Fungi. 2023;9:788.

    Article 
    CAS 

    Google Scholar
     

  • Kumar G, Reaume AM, Farrell E, Gaither MR. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS ONE. 2022;17:e0266720.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins FMS, Porto M, Feio MJ, Egeter B, Bonin A, Serra SRQ, et al. Modelling technical and biological biases in macroinvertebrate community assessment from bulk preservative using multiple metabarcoding markers. Mol Ecol. 2021;30:3221–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kocher A, Gantier J-C, Gaborit P, Zinger L, Holota H, Valiere S, et al. Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Mol Ecol Resour. 2017;17:172–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shouche YS, Patole MS. Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species. J Biosci. 2000;25:361–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma AK, Mendki MJ, Tikar SN, Kulkarni G, Veer V, Prakash S, et al. Molecular phylogenetic study of Culex quinquefasciatus mosquito from different geographical regions of India using 16S rRNA gene sequences. Acta Trop. 2010;116:89–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyiola OA, Shaibu RD, Shittu O, Adelaja OJ, Aishat TKI, Fadipe TO, et al. Genetic diversity and molecular characterization of mosquitoes (Diptera: Culicidae) in North-Central Nigeria using ribosomal DNA ITS2 and mitochondrial 16S-DNA sequences. Iraqi J Vet Med. 2020;44:78–91.

    Article 

    Google Scholar
     

  • Suman DS, Sharma G, De S, Kumar V, Veer V, Chandra K, et al. Description of Culex (Culex) kodaikanalensis sp. nov. (Diptera: Culicidae) from India with phyletic analysis using mitochondrial cytochrome oxidase I and 16S rRNA genes. Int J Trop Insect Sci. 2022;42:2969–78.

    Article 

    Google Scholar
     

  • Kohli R, Chaudhry S. Sequence analysis of mitochondrial 16s ribosomal RNA Gene fragment in the two populations of Armigeres (Armigeres) subalbatus (Culcidae: Diptera). Cytologia. 2007;72:83–8.

    Article 
    CAS 

    Google Scholar
     

  • Batovska J, Cogan NOI, Lynch SE, Blacket MJ. Using next-generation sequencing for DNA barcoding capturing allelic variation in ITS2. G3 (Bethesda). 2017;7:19–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link