Scientific Papers

Isolation and functional analysis of the Larix olgensis LoNAC3 transcription factor gene | BMC Plant Biology


  • Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R. Plants’ Response to Abiotic Stress: Mechanisms and Strategies. Int J Mol Sci. 2023;24(13). https://doi.org/10.3390/ijms241310915.

  • Schuppler U, He PH, John PC, Munns R. Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol. 1998;117(2):667–78. https://doi.org/10.1104/pp.117.2.667.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol. 2020;71:403–33. https://doi.org/10.1146/annurev-arplant-050718-100005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • M FEDERICO GIACOMO G. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 2005;28:834–49.

    Article 

    Google Scholar
     

  • Reddya AR, Chaitanyaa KV, Vivekanandanb M. Drought-induced responses of photosynthesis andantioxidant metabolism in higher plants. J Plant Physiol. 2004;161(11):1189–202. https://doi.org/10.1016/j.jplph.2004.01.013.

    Article 
    CAS 

    Google Scholar
     

  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30. https://doi.org/10.1016/j.plaphy.2010.08.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65(5):1229–40. https://doi.org/10.1093/jxb/ert375.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2020;290(5499):2105–10. https://doi.org/10.1126/science.290.5499.2105.

    Article 

    Google Scholar
     

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. Bmc Plant Biol. 2010;10:145. https://doi.org/10.1186/1471-2229-10-145.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Oliveira TM, Cidade LC, Gesteira AS, Coelho Filho MA, Soares Filho WS, Costa MGC. Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genet Genomes. 2011;7(6):1123–34. https://doi.org/10.1007/s11295-011-0400-8.

    Article 

    Google Scholar
     

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY. Molecular analysis of the NAC gene family in rice. Mol Gen Genet. 2000;262(6):1047–51. https://doi.org/10.1007/pl00008647.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. Dna Res. 2003;10(6):239–47. https://doi.org/10.1093/dnares/10.6.239.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997;9(6):841–57. https://doi.org/10.1105/tpc.9.6.841.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85(2):159–70. https://doi.org/10.1016/s0092-8674(00)81093-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10(2):79–87. https://doi.org/10.1016/j.tplants.2004.12.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol. 2003;53(3):383–97. https://doi.org/10.1023/b:plan.0000006944.61384.11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC. TheCUP-SHAPED COTYLEDON3 gene is required for Boundary and shoot Meristem formation in Arabidopsis. Plant Cell. 2003;15(7):1563–77. https://doi.org/10.1105/tpc.012203.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Q, Frugis G, Colgan D, Chua NH. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000;14(23):3024–36. https://doi.org/10.1101/gad.852200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011;68(2):302–13. https://doi.org/10.1111/j.1365-313X.2011.04687.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a Drought-Responsivecis-element in theearly responsive to dehydration stress 1 Promoter[W]. Plant Cell. 2014;16(9):2481–98. https://doi.org/10.1105/tpc.104.022699.

    Article 

    Google Scholar
     

  • Lu P, Chen N, An R, Su Z, Qi B, Ren F, Chen J, Wang X. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol. 2006;63(2):289–305. https://doi.org/10.1007/s11103-006-9089-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I. The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type transcription factors in dehydration and osmotic stress responses. Plant Cell. 2013;25(11):4708–24. https://doi.org/10.1105/tpc.113.119099.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Wang B, Li Z, Peng Z, Zhang J. TisAC1key transcriptionifactorFactor in Abiotic Stress ResistancgrowthGrowth. Plant Physiol. 2018;176(1):742–56. https://doi.org/10.1104/pp.17.01089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Cui X, Guo Y, Luo C, Zhang L. Wilsoniilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Mol Biol. 2018;98(6):471–93. https://doi.org/10.1007/s11103-018-0792-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akiyoshi N, Nakano Y, Sano R, Kunigita Y, Ohtani M, Demura T. Involvement of VNS NAC-domain transcription factors in tracheid formation in Pinus taeda. Tree Physiol. 2020;40(6):704–16. https://doi.org/10.1093/treephys/tpz106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Q, An P, Zhang S, Wang J, Zhang H, Zhang L. Preliminary analysis of two NAC transcription factor expression patterns in Larix olgensis. J Forestry Res. 2022;33(2):601–9. https://doi.org/10.1007/s11676-021-01331-x.

    Article 
    CAS 

    Google Scholar
     

  • An P, Wang C, Cao Q, Zhao Q, Qin R, Zhang L, Zhang H. Genetic transformation and growth index determination of the Larix olgensis LoHDZ2 transcription factor gene in tobacco. Sci Rep. 2021;11(1):20746. https://doi.org/10.1038/s41598-021-99533-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang K, Wang A, Yuan Y, Miao Y, Zhang L. Wilsoniilsonii NAC TranscrifactorFactor PwNAC30 NegatregulatesuabioticbstressStoleranceerantransgenicsgenic Arabidopsis. Plant Mol Biol Rep. 2020;38(4):554–71. https://doi.org/10.1007/s11105-020-01216-z.

    Article 
    CAS 

    Google Scholar
     

  • Ko JH, Yang SH, Park AH, Lerouxel O, Han KH. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 2007;50(6):1035–48. https://doi.org/10.1111/j.1365-313X.2007.03109.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K, Nowack MK. Programmed cell death controlled by ANAC033/SOMBRERO determines Root Cap Organ size in Arabidopsis. Curr Biol. 2014;24(9):931–40. https://doi.org/10.1016/j.cub.2014.03.025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandler P. Gene expression regulated by Abscisic Acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant mol biol. 1994;45(1):113–41.

    Article 
    CAS 

    Google Scholar
     

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79. https://doi.org/10.1146/annurev-arplant-042809-112122.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao S, Zheng Y, Yang Z, Tang S, Jin P, Wang K, Wang X. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biol Tec. 2008;49(2):301–7. https://doi.org/10.1016/j.postharvbio.2007.12.007.

    Article 
    CAS 

    Google Scholar
     

  • Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992;4(9):1157–70. https://doi.org/10.1105/tpc.4.9.1157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed HI, Latif HH. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Pla. 2017;23(3):545–56. https://doi.org/10.1007/s12298-017-0451-x.

    Article 
    CAS 

    Google Scholar
     

  • Bu Q, Hongling J, Chang-Bao LQZJ, Jiaqiang S, Xie Q, Chuanyou L. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-sig- naled defense responses. Cell Res. 2008;18:756–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Zhang K, Xiong H, Xie Y, Li R, Wu X, Yang Y, Wu H, Hao Z, Sun X. H2O2 significantly affects Larix kaempferi × Larix olgensis somatic embryogenesis. Int J Mol Sci. 2024;25:669. https://doi.org/10.3390/ijms25010669.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Cui Y, Liu B, Wang Y, Sun S, Wang J, Tan M, Yan H, Zhang Y. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. Fro Pla Sci. 2022. https://doi.org/10.3389/fpls.2022.993841.

    Article 

    Google Scholar
     

  • Negi S, Tak H, Singh S, et al. MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H2O2 accumulation. Physiol Plant. 2022;174(1). https://doi.org/10.1111/ppl.13593.

  • Negi S, Bhakta S, Ganapathi T, et al. MpSNAC67 transcription factor of banana regulates stress induced senescence through salicylic acid dependent pathway. Environ Exp Bot. 2022;105104. https://doi.org/10.1016/j.envexpbot.

  • Negi S, Tak H, Ganapathi TR. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant Mol Biol. 2018. https://doi.org/10.1007/s11103-018-0710-4.

    Article 
    PubMed 

    Google Scholar
     

  • Negi S, Tak H, Ganapathi TR. Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants. Plant Cell Tiss Organ Cult. 2016;125:59–70. https://doi.org/10.1007/s11240-015-0929-6.

    Article 
    CAS 

    Google Scholar
     



  • Source link