Scientific Papers

Repeated LPS induces training and tolerance of microglial responses across brain regions | Journal of Neuroinflammation


  • Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jyonouchi H. Innate Immunity and Neuroinflammation in Neuropsychiatric Conditions Including Autism Spectrum Disorders: Role of Innate Immune Memory. Cytokines. IntechOpen; 2020. doi: 10.5772/intechopen.87167


    Google Scholar
     

  • Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17(3):400–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neher JJ, Cunningham C. Priming microglia for innate immune memory in the brain. Trends Immunol. 2019;40(4):358–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond TR, Robinton D, Stevens B. Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol. 2018;34(1):523–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem. 2012;120(6):948–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367(6478):688–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrasch-Parwez E, Schöbel A, Benali A, Moinfar Z, Förster E, Brüne M, et al. Lateralization of increased density of Iba1-immunopositive microglial cells in the anterior midcingulate cortex of schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2020;270(7):819–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry. 2018;23(2):177–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiat. 2013;70(1):49–58.

    Article 

    Google Scholar
     

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021;21(8):526–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood ER, Burelbach KR, McBride MA, Stothers CL, Owen AM, Hernandez A, et al. Innate immune memory and the host response to infection. J Immunol. 2022;208(4):785–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham DB, Xavier RJ. Conditioning of the immune system by the microbiome. Trends Immunol. 2023;44(7):499–511.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10(12):1538–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43(1):92–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556(7701):332–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner RC, Naser ZJ, Lucke-Wold BP, Logsdon AF, Vangilder RL, Matsumoto RR, et al. Single low-dose lipopolysaccharide preconditioning: neuroprotective against axonal injury and modulates glial cells. Neuroimmunol Neuroinflamm. 2017;4:6–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage JC, Carrier M, Tremblay MÈ. Morphology of microglia across contexts of health and disease. Methods Mol Biol. 2019;2034:13–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25(2):351–67.

    Article 
    PubMed 

    Google Scholar
     

  • Kay M, Elkin LA, Higgins JJ, Wobbrock JO. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1; 2021. https://github.com/mjskay/ARTool. https://doi.org/10.5281/zenodo.594511.

  • Vogel-Ciernia A, Wood MA. Examining object location and object recognition memory in mice. Curr Protoc Neurosci. 2014;69:8.31.1-8.31.17.

    Article 
    PubMed 

    Google Scholar
     

  • Chiu K, Lau WM, Lau HT, So KF, Chang RCC. Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp. 2007;7:269.


    Google Scholar
     

  • Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolde R. pheatmap: pretty heatmaps; 2019. https://CRAN.R-project.org/package=pheatmap

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3): 100141.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marc Carlson. org.Mm.eg.db: genome wide annotation for Mouse.

  • Jao J, Ciernia AV. MGEnrichment: a web application for microglia gene list enrichment analysis 2 3. PLoS Comput Biol. 2021;17(11): e1009160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duttke SH, Chang MW, Heinz S, Benner C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res; 2019. https://genome.cshlp.org/content/early/2019/10/24/gr.253492.119. Accessed 12 Mar 2024.

  • Saeki K, Pan R, Lee E, Kurotaki D, Ozato K. IRF8 configures enhancer landscape in postnatal microglia and directs microglia specific transcriptional programs. bioRxiv. 2023. https://doi.org/10.1101/2023.06.25.546453v2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J Exp Med. 2016;213(4):585–603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, et al. Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 2010;24(24):2760–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function. Cell. 2018;173(7):1796-1809.e17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356(6344):eaal3222.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28(14):1919–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999-1014.e22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamayo JM, Rose D, Church JS, Schwartzer JJ, Ashwood P. Maternal allergic asthma induces prenatal neuroinflammation. Brain Sci. 2022;12(8):1041.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osman HC, Moreno R, Rose D, Rowland ME, Ciernia AV, Ashwood P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J Neuroinflamm. 2024;21(1):118.

    Article 
    CAS 

    Google Scholar
     

  • Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton KE, Ashwood P. Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. J Neuroinflamm. 2023;20(1):252.

    Article 
    CAS 

    Google Scholar
     

  • Kim J, Pavlidis P, Ciernia AV. Development of a High-Throughput Pipeline to Characterize Microglia Morphological States at a Single-Cell Resolution. eNeuro. 2024;11(7):ENEURO.0014-24.2024. https://doi.org/10.1523/ENEURO.0014-24.2024.

  • Pinskiy V, Jones J, Tolpygo AS, Franciotti N, Weber K, Mitra P. High-throughput method of whole-brain sectioning, using the tape-transfer technique. PLoS ONE. 2015;10(7): e0102363.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terstege DJ, Oboh DO, Epp JR. FASTMAP: open-source flexible atlas segmentation tool for multi-area processing of biological images. eNeuro. 2022. https://doi.org/10.1523/ENEURO.0325-21.2022.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9(2):378–400.

    Article 

    Google Scholar
     

  • Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M. A high-level 3D visualization API for Java and ImageJ. BMC Bioinform. 2010;11(1):274.

    Article 

    Google Scholar
     

  • Meleady L, Towriss M, Kim J, Bacarac V, Dang V, Rowland ME, et al. Histone deacetylase 3 regulates microglial function through histone deacetylation. Epigenetics. 2023;18(1):2241008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Towriss M, MacVicar B, Ciernia AV. Modelling microglial innate immune memory in vitro: understanding the role of aerobic glycolysis in innate immune memory. Int J Mol Sci. 2023;24(10):8967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel Ciernia A, Link VM, Careaga M, LaSalle J, Ashwood P. Genetic variants drive altered epigenetic regulation of endotoxin response in BTBR macrophages. Brain Behav Immun. 2020;89:20–31.

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, et al. Epigenetic regulation of innate immune memory in microglia. J Neuroinflamm. 2022;19(1):111.

    Article 
    CAS 

    Google Scholar
     

  • Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol. 2022;5(1):1–17.

    Article 

    Google Scholar
     

  • Kusiak A, Brady G. Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochem Pharmacol. 2022;205: 115246.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang AG, Son M, Kenna E, Thom N, Tay S. NF-κB memory coordinates transcriptional responses to dynamic inflammatory stimuli. Cell Rep. 2022;40(7): 111159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwanaszko M, Kimmel M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics. 2015;16(1):307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Platanitis E, Decker T. Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Front Immunol. 2018;9:2542.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim et Biophys Acta BBA Mol Basis Dis. 2016;1862(3):339–51.

    Article 
    CAS 

    Google Scholar
     

  • Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci. 2023. https://doi.org/10.3389/fnmol.2022.1072046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023;23(9):563–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Gephart MH, et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron. 2018;98(6):1170-1183.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, et al. β-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell. 2016;167(5):1354-1368.e14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X, et al. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci. 2012;32(34):11706–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol. 2023;14:1196931.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda T, Tsuda M, Inoue K. Transcriptional regulation in microglia and neuropathic pain. Pain Management. 2016;6(2):91–4.

    Article 
    PubMed 

    Google Scholar
     

  • Gao T, Jernigan J, Raza SA, Dammer EB, Xiao H, Seyfried NT, et al. Transcriptional regulation of homeostatic and disease-associated-microglial genes by IRF1, LXRβ, and CEBPα. Glia. 2019;67(10):1958–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep. 2012;1(4):334–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda T, Nishimoto N, Tomiyama D, Matsuda T, Tozaki-Saitoh H, Tamura T, et al. IRF8 is a transcriptional determinant for microglial motility. Purinergic Signal. 2014;10(3):515–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, et al. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflamm. 2012;9:227.

    Article 
    CAS 

    Google Scholar
     

  • Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflamm. 2015;12(1):223.

    Article 

    Google Scholar
     

  • Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, García-Bueno B, et al. Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep. 2017;7(1):13113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vichaya EG, Malik S, Sominsky L, Ford BG, Spencer SJ, Dantzer R. Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J Neuroinflamm. 2020;17:172.

    Article 
    CAS 

    Google Scholar
     

  • Chistyakov DV, Astakhova AA, Azbukina NV, Goriainov SV, Chistyakov VV, Sergeeva MG. Cellular model of endotoxin tolerance in astrocytes: role of interleukin 10 and oxylipins. Cells. 2019;8(12):1553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirmbeck GH, Seady M, Fróes FT, Taday J, Da Ré C, Souza JM, et al. Long-term LPS systemic administration leads to memory impairment and disturbance in astrocytic homeostasis. Neurotoxicology. 2023;99:322–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian Y, Zhao X, Li M, Zeng S, Zhao B. Various roles of astrocytes during recovery from repeated exposure to different doses of lipopolysaccharide. Behav Brain Res. 2013;253:253–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beurel E. HDAC6 regulates LPS-tolerance in astrocytes. PLoS ONE. 2011;6(10): e25804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391–410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. 2021;24(10):1475–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung H, Lee D, You H, Lee M, Kim H, Cheong E, et al. LPS induces microglial activation and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive impairment. Sci Rep. 2023;13(1):6547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh B, Stevens SL, Packard AEB, Gopalan B, Hunter B, Leung PY, et al. Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci. 2009;29(31):9839–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke. 2004;35(11):2576–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickey EJ, You X, Kaimaktchiev V, Stenzel-Poore M, Ungerleider RM. Lipopolysaccharide preconditioning induces robust protection against brain injury resulting from deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2007;133(6):1588–96.

    Article 
    PubMed 

    Google Scholar
     

  • Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: a field at its crossroads. Neuron. 2022;110(21):3458–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng J, Han L, Xu H, Zhang L, Liu Z, Zhou Y, et al. TREM2 regulates microglial phagocytosis of synapses in innate immune tolerance. Int Immunopharmacol. 2024;127: 111445.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia. 2017;65(9):1504–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cengiz P, Zafer D, Chandrashekhar JH, Chanana V, Bogost J, Waldman A, et al. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia. Neurochem Int. 2019;127:137–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, et al. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci. 2012;13(1):64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayoub AE, Salm AK. Increased morphological diversity of microglia in the activated hypothalamic supraoptic nucleus. J Neurosci. 2003;23(21):7759–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouvier DS, Jones EV, Quesseveur G, Davoli MA, Ferreira AT, Quirion R, et al. High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci Rep. 2016;6:24544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachstetter AD, Van Eldik LJ, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, et al. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun. 2015;3:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondo E, Becker SC, Kautzman AG, Schifferer M, Baer CE, Chen J, et al. A Developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature. J Neurosci. 2020;40(34):6503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bisht K, Okojie KA, Sharma K, Lentferink DH, Sun YY, Chen HR, et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat Commun. 2021;12(1):5289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris GP, Foster CG, Courtney JM, Collins JM, Cashion JM, Brown LS, et al. Microglia directly associate with pericytes in the central nervous system. Glia. 2023;71(8):1847–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R, et al. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol. 2015;129(2):279–95.

    Article 
    PubMed 

    Google Scholar
     

  • Davalos D, Kyu Ryu J, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3(1):1227.

    Article 
    PubMed 

    Google Scholar
     

  • Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 2019;10(1):5816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflamm. 2012;9(1):247.

    Article 

    Google Scholar
     

  • Taylor SE, Morganti-Kossmann C, Lifshitz J, Ziebell JM. Rod microglia: a morphological definition. PLoS ONE. 2014;9(5): e97096.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giordano KR, Denman CR, Dubisch PS, Akhter M, Lifshitz J. An update on the rod microglia variant in experimental and clinical brain injury and disease. Brain Commun. 2021;3(1):fcaa227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20(4):779–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link