Scientific Papers

The roles of OGT and its mechanisms in cancer | Cell & Bioscience


  • Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729–49. https://doi.org/10.1038/s41580-020-00294-x.

    Article 
    PubMed 

    Google Scholar
     

  • Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259(5):3308–17.

    Article 
    PubMed 

    Google Scholar
     

  • Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol. 1987;104(5):1157–64. https://doi.org/10.1083/jcb.104.5.1157.

    Article 
    PubMed 

    Google Scholar
     

  • Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Sci (New York NY). 2001;291(5512):2376–8. https://doi.org/10.1126/science.1058714.

    Article 

    Google Scholar
     

  • Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta. 2012;1820(12):1839–48. https://doi.org/10.1016/j.bbagen.2012.08.024.

    Article 
    PubMed 

    Google Scholar
     

  • Liu AR, Ramakrishnan P. Regulation of Nuclear factor-kappab function by O-GlcNAcylation in inflammation and Cancer. Front cell Dev Biology. 2021;9:751761. https://doi.org/10.3389/fcell.2021.751761.

    Article 

    Google Scholar
     

  • Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN, Reginato MJ. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 2014;54(5):820–31. https://doi.org/10.1016/j.molcel.2014.04.026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991;266(8):4706–12.

    Article 
    PubMed 

    Google Scholar
     

  • Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019;17(1):52. https://doi.org/10.1186/s12915-019-0671-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446(7139):1017–22. https://doi.org/10.1038/nature05815.

    Article 
    PubMed 

    Google Scholar
     

  • Nolte D, Müller U. Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mammalian genome. Official J Int Mammalian Genome Soc. 2002;13(1):62–4. https://doi.org/10.1007/s00335-001-2108-9.

    Article 

    Google Scholar
     

  • Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011;469(7331):564–7. https://doi.org/10.1038/nature09638.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem. 2000;275(15):10983–8. https://doi.org/10.1074/jbc.275.15.10983.

    Article 
    PubMed 

    Google Scholar
     

  • Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521–55. https://doi.org/10.1146/annurev.biochem.76.061005.092322.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, He Y, Feng F, Liu W, Ye F, Qu W. OGT as potential novel target: structure, function and inhibitors. Chemico-Biol Interact. 2022;357:109886. https://doi.org/10.1016/j.cbi.2022.109886.

    Article 

    Google Scholar
     

  • Lubas WA, Frank DW, Krause M, Hanover JA. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem. 1997;272(14):9316–24. https://doi.org/10.1074/jbc.272.14.9316.

    Article 
    PubMed 

    Google Scholar
     

  • Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys. 2003;409(2):287–97. https://doi.org/10.1016/s0003-9861(02)00578-7.

    Article 
    PubMed 

    Google Scholar
     

  • Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 1997;272(14):9308–15. https://doi.org/10.1074/jbc.272.14.9308.

    Article 
    PubMed 

    Google Scholar
     

  • Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci. 2003;116(Pt 4):647–54. https://doi.org/10.1242/jcs.00246.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Li L, Ma C, Shi Y, Liu C, Xiao Z, Zhang Y, Tian F, Gao Y, Zhang J, Ying W, Wang PG, Zhang L. O-GlcNAcylation of Thr(12)/Ser(56) in short-form O-GlcNAc transferase (sOGT) regulates its substrate selectivity. J Biol Chem. 2019;294(45):16620–33. https://doi.org/10.1074/jbc.RA119.009085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones. 2011;16(4):353–67. https://doi.org/10.1007/s12192-010-0248-0.

    Article 
    PubMed 

    Google Scholar
     

  • Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. Aspartate residues far from the active site drive O-GlcNAc transferase substrate selection. J Am Chem Soc. 2019;141(33):12974–8. https://doi.org/10.1021/jacs.9b06061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jínek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol. 2004;11(10):1001–7. https://doi.org/10.1038/nsmb833.

    Article 
    PubMed 

    Google Scholar
     

  • Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays: News Reviews Mol Cell Dev Biology. 1999;21(11):932–9. https://doi.org/10.1002/(SICI)1521-1878(199911)21:11%3C932::AID-BIES5%3E3.0.CO;2-N.

  • Wang Y, Shu H, Liu J, Jin X, Wang L, Qu Y, Xia M, Peng P, Feng Y, Wei M. EGF promotes PKM2 O-GlcNAcylation by stimulating O-GlcNAc transferase phosphorylation at Y976 and their subsequent association. J Biol Chem. 2022;298(9):102340. https://doi.org/10.1016/j.jbc.2022.102340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CC, Hou F, Zhang Y. Mixed lineage leukemia 5 (MLL5) Protein Stability is cooperatively regulated by O-GlcNac Transferase (OGT) and Ubiquitin specific protease 7 (USP7). PLoS ONE. 2015;10(12):e0145023. https://doi.org/10.1371/journal.pone.0145023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai L, Yang X, Dong J, Qian L, Gao Y, Lv Y, Chen L, Chen B, Zhou F. O–GlcNAcylation mediates endometrial cancer progression by regulating the Hippo–YAP pathway. Int J Oncol. 2023;63(2). https://doi.org/10.3892/ijo.2023.5538.

  • Wang Y, Wang G, Liu Y, Yang F, Zhang H, Kong Y. Icaritin inhibits endometrial carcinoma cells by suppressing O-GlcNAcylation of FOXC1. Phytomedicine: Int J Phytotherapy Phytopharmacology. 2023;120:155062. https://doi.org/10.1016/j.phymed.2023.155062.

    Article 

    Google Scholar
     

  • Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, Minner S, Sauter G, McDade SS, Mills IG. VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate Cancer. Mol cancer Research: MCR. 2022;20(7):1047–60. https://doi.org/10.1158/1541-7786.Mcr-21-0477.

    Article 
    PubMed 

    Google Scholar
     

  • Shen H, Zhao X, Chen J, Qu W, Huang X, Wang M, Shao Z, Shu Q, Li X. O-GlcNAc transferase ogt regulates embryonic neuronal development through modulating Wnt/β-catenin signaling. Hum Mol Genet. 2021;31(1):57–68. https://doi.org/10.1093/hmg/ddab223.

    Article 
    PubMed 

    Google Scholar
     

  • Levine ZG, Potter SC, Joiner CM, Fei GQ, Nabet B, Sonnett M, Zachara NE, Gray NS, Paulo JA, Walker S. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci USA. 2021;118(4). https://doi.org/10.1073/pnas.2016778118.

  • Li X, Yue X, Sepulveda H, Burt RA, Scott DA, S, AC SAM, Rao A. OGT controls mammalian cell viability by regulating the proteasome/mTOR/ mitochondrial axis. Proc Natl Acad Sci USA. 2023;120(3):e2218332120. https://doi.org/10.1073/pnas.2218332120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132(Pt 7):1820–32. https://doi.org/10.1093/brain/awp099.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, Pan Q, Wang J, Sun F. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 2017;8:15280. https://doi.org/10.1038/ncomms15280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang M, Qiu Z, Zhang S, Fan X, Cai X, Xu B, Li X, Zhou J, Zhang X, Chu Y, Wang W, Liang J, Horvath T, Yang X, Wu K, Nie Y, Fan D. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling. Oncotarget. 2016;7(38):61390–402. https://doi.org/10.18632/oncotarget.11359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu G, Qian M, Lu L, Chen Y, Zhang X, Wu Q, Liu Y, Bian Z, Yang Y, Guo S, Wang J, Pan Q, Sun F. O-GlcNAcylation of YY1 stimulates tumorigenesis in colorectal cancer cells by targeting SLC22A15 and AANAT. Carcinogenesis. 2019;40(9):1121–31. https://doi.org/10.1093/carcin/bgz010.

    Article 
    PubMed 

    Google Scholar
     

  • Shi R, Tao J, Jiang X, Li M, Zhu R, Luo S, Lu Z. Fructose-1,6-bisphosphatase 1 suppresses PPARα-mediated gene transcription and non-small-cell lung cancer progression. Am J cancer Res. 2023;13(10):4742–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Li M, Jiang H, Luo S, Shao F, Xia Y, Yang M, Ren X, Liu T, Yan M, Qian X, He H, Guo D, Duan Y, Wu K, Wang L, Ji G, Shen Y, Li L, Zheng P, Dong B, Fang J, Zheng M, Liang T, Li H, Yu R, Xu D, Lu Z. Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol. 2022;24(11):1655–65. https://doi.org/10.1038/s41556-022-01009-4.

    Article 
    PubMed 

    Google Scholar
     

  • Yin Q, Zheng M, Luo Q, Jiang D, Zhang H, Chen C. YB-1 as an oncoprotein: functions, Regulation, post-translational modifications, and targeted therapy. Cells. 2022;11(7). https://doi.org/10.3390/cells11071217.

  • Tao Z, Ruan H, Sun L, Kuang D, Song Y, Wang Q, Wang T, Hao Y, Chen K. Targeting the YB-1/PD-L1 Axis to Enhance Chemotherapy and Antitumor Immunity. Cancer Immunol Res. 2019;7(7):1135–47. https://doi.org/10.1158/2326-6066.Cir-18-0648.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Q, Tao T, Liu F, Ni R, Lu C, Shen A. Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res. 2016;349(2):230–8. https://doi.org/10.1016/j.yexcr.2016.10.011.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou P, Chang WY, Gong DA, Xia J, Chen W, Huang LY, Liu R, Liu Y, Chen C, Wang K, Tang N, Huang AL. High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. Cell Metabol. 2023;35(11):1961–75. .e6.

    Article 

    Google Scholar
     

  • Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Sem Cancer Biol. 2022;85:123–54. https://doi.org/10.1016/j.semcancer.2021.05.010.

    Article 

    Google Scholar
     

  • Xu Y, Sheng X, Zhao T, Zhang L, Ruan Y, Lu H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology. 2021;31(5):571–81. https://doi.org/10.1093/glycob/cwaa103.

    Article 
    PubMed 

    Google Scholar
     

  • Chai Y, Du Y, Zhang S, Xiao J, Luo Z, He F, Huang K. MicroRNA-485-5p reduces O-GlcNAcylation of Bmi-1 and inhibits colorectal cancer proliferation. Exp Cell Res. 2018;368(1):111–8. https://doi.org/10.1016/j.yexcr.2018.04.020.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Ahmad M, Sang L, Zhan Y, Wang Y, Yan Y, Liu Y, Mi W, Lu M, Dai Y, Zhang R, Dong MQ, Yang YG, Wang X, Sun J, Li J. O-GlcNAcylation promotes the cytosolic localization of the m(6)a reader YTHDF1 and colorectal cancer tumorigenesis. J Biol Chem. 2023;299(6):104738. https://doi.org/10.1016/j.jbc.2023.104738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su Z, Gao A, Li X, Zou S, He C, Wu J, Ding WQ, Zhou J. DNA polymerase Iota promotes esophageal squamous cell Carcinoma Proliferation through Erk-OGT-Induced G6PD overactivation. Front Oncol. 2021;11:706337. https://doi.org/10.3389/fonc.2021.706337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu FY, Zhou CY, Liu YB, Wang B, Mao L, Li Y. miR-483 is down-regulated in gastric cancer and suppresses cell proliferation, invasion and protein O-GlcNAcylation by targeting OGT. Neoplasma. 2018;65(3):406–14. https://doi.org/10.4149/neo_2018_170608N411.

    Article 
    PubMed 

    Google Scholar
     

  • Ning D, Chen J, Du P, Liu Q, Cheng Q, Li X, Zhang B, Chen X, Jiang L. The crosstalk network of XIST/miR-424-5p/OGT mediates RAF1 glycosylation and participates in the progression of liver cancer. Liver International: Official J Int Association Study Liver. 2021;41(8):1933–44. https://doi.org/10.1111/liv.14904.

    Article 

    Google Scholar
     

  • Zheng W, Li H, Zhang H, Zhang C, Zhu Z, Liang H, Zhou Y. Long noncoding RNA RHPN1-AS1 promotes colorectal cancer progression via targeting miR-7-5p/OGT axis. Cancer Cell Int. 2020;20:54. https://doi.org/10.1186/s12935-020-1110-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerstberger S, Jiang Q, Ganesh K, Metastasis. Cell. 2023;186(8):1564–79. https://doi.org/10.1016/j.cell.2023.03.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal V. Epithelial mesenchymal transition in Tumor Metastasis. Annu Rev Pathol. 2018;13:395–412. https://doi.org/10.1146/annurev-pathol-020117-043854.

    Article 
    PubMed 

    Google Scholar
     

  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang M, Xu B, Li X, Shang Y, Chu Y, Wang W, Chen D, Wu N, Hu S, Zhang S, Li M, Wu K, Yang X, Liang J, Nie Y, Fan D. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene. 2019;38(3):301–16. https://doi.org/10.1038/s41388-018-0435-5.

    Article 
    PubMed 

    Google Scholar
     

  • Ge X, Peng X, Li M, Ji F, Chen J, Zhang D. OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol Res Pract. 2021;225:153580. https://doi.org/10.1016/j.prp.2021.153580.

    Article 
    PubMed 

    Google Scholar
     

  • Jin FZ, Yu C, Zhao DZ, Wu MJ, Yang Z. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells. Exp Cell Res. 2013;319(10):1482–90. https://doi.org/10.1016/j.yexcr.2013.03.013.

    Article 
    PubMed 

    Google Scholar
     

  • de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix metalloproteinases: from Molecular mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev. 2022;74(3):712–68. https://doi.org/10.1124/pharmrev.121.000349.

    Article 
    PubMed 

    Google Scholar
     

  • Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R. Matrix metalloproteinases. Curr Med Chem. 2010;17(31):3751–68. https://doi.org/10.2174/092986710793213724.

    Article 
    PubMed 

    Google Scholar
     

  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao Z, Dang C, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Ma Y, Kong R, Ma Z. Downregulation of O-linked N-acetylglucosamine transferase by RNA interference decreases MMP9 expression in human esophageal cancer cells. Oncol Lett. 2016;11(5):3317–23. https://doi.org/10.3892/ol.2016.4428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ. Critical role of O-Linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem. 2012;287(14):11070–81. https://doi.org/10.1074/jbc.M111.302547.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X, Zou Q. OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene. 2021;40(30):4859–71. https://doi.org/10.1038/s41388-021-01901-7.

    Article 
    PubMed 

    Google Scholar
     

  • Lv Z, Ma G, Zhong Z, Xie X, Li B, Long D. O-GlcNAcylation of RAB10 promotes hepatocellular carcinoma progression. Carcinogenesis. 2023;44(10–11):785–94. https://doi.org/10.1093/carcin/bgad034.

    Article 
    PubMed 

    Google Scholar
     

  • Hao JW, Wang J, Guo H, Zhao YY, Sun HH, Li YF, Lai XY, Zhao N, Wang X, Xie C, Hong L, Huang X, Wang HR, Li CB, Liang B, Chen S, Zhao TJ. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020;11(1):4765. https://doi.org/10.1038/s41467-020-18565-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son NH, Basu D, Samovski D, Pietka TA, Peche VS, Willecke F, Fang X, Yu SQ, Scerbo D, Chang HR, Sun F, Bagdasarov S, Drosatos K, Yeh ST, Mullick AE, Shoghi KI, Gumaste N, Kim K, Huggins LA, Lhakhang T, Abumrad NA, Goldberg IJ. Endothelial cell CD36 optimizes tissue fatty acid uptake. J Clin Investig. 2018;128(10):4329–42. https://doi.org/10.1172/jci99315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang M, Wu N, Xu B, Chu Y, Li X, Su S, Chen D, Li W, Shi Y, Gao X, Zhang H, Zhang Z, Du W, Nie Y, Liang J, Fan D. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics. 2019;9(18):5359–73. https://doi.org/10.7150/thno.34024.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20. https://doi.org/10.1038/nature12730.

    Article 
    PubMed 

    Google Scholar
     

  • Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)a modification. Trends Genet. 2020;36(3):177–88. https://doi.org/10.1016/j.tig.2019.12.007.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Y, Yan Y, Yin J, Tang N, Wang K, Huang L, Hu J, Feng Z, Gao Q, Huang A. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Therapy. 2023;8(1):63. https://doi.org/10.1038/s41392-023-01316-8.

    Article 

    Google Scholar
     

  • Wang G, Xu Z, Sun J, Liu B, Ruan Y, Gu J, Song S. O-GlcNAcylation enhances Reticulon 2 protein stability and its promotive effects on gastric cancer progression. Cell Signal. 2023;108:110718. https://doi.org/10.1016/j.cellsig.2023.110718.

    Article 
    PubMed 

    Google Scholar
     

  • Lin CH, Liao CC, Wang SY, Peng CY, Yeh YC, Chen MY, Chou TY. Comparative O-GlcNAc proteomic analysis reveals a role of O-GlcNAcylated SAM68 in Lung Cancer aggressiveness. Cancers. 2022;14(1). https://doi.org/10.3390/cancers14010243.

  • Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48(7):3638–56. https://doi.org/10.1093/nar/gkaa130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, Shao ZM, Li DQ. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics. 2023;13(3):973–90. https://doi.org/10.7150/thno.79688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM, Li DQ. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ. 2022;29(4):861–73. https://doi.org/10.1038/s41418-021-00901-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010;29(19):2831–42. https://doi.org/10.1038/onc.2010.41.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Huang H, Cao Y, Wu Q, Li W, Zhang J. Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. Biochem Biophys Res Commun. 2017;487(3):755–62. https://doi.org/10.1016/j.bbrc.2017.04.135.

    Article 
    PubMed 

    Google Scholar
     

  • Tao T, He Z, Shao Z, Lu H. Table 3 O-GlcNAcylation promotes metastasis of triple negative breast cancer. Oncotarget. 2016;7(16):22807–18. https://doi.org/10.18632/oncotarget.8182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: a focus on epithelial-mesenchymal transition. J Cell Physiol. 2022;237(7):2770–95. https://doi.org/10.1002/jcp.30759.

    Article 
    PubMed 

    Google Scholar
     

  • Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol. 2019;234(10):17187–204. https://doi.org/10.1002/jcp.28504.

    Article 
    PubMed 

    Google Scholar
     

  • Ali A, Kim SH, Kim MJ, Choi MY, Kang SS, Cho GJ, Kim YS, Choi JY, Choi WS. O-GlcNAcylation of NF-κB promotes Lung Metastasis of Cervical Cancer cells via Upregulation of CXCR4 expression. Mol Cells. 2017;40(7):476–84. https://doi.org/10.14348/molcells.2017.2309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu Y, Xia Y, Wang J, Shi X. O-GlcNAcylation promotes migration and invasion in human ovarian cancer cells via the RhoA/ROCK/MLC pathway. Mol Med Rep. 2017;15(4):2083–9. https://doi.org/10.3892/mmr.2017.6244.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, Jung J, Son S, Yi EC, Lee TH, Yang WH, Cho JW. Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis. 2020;11(9):815. https://doi.org/10.1038/s41419-020-02999-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu N, Jiang M, Han Y, Liu H, Chu Y, Liu H, Cao J, Hou Q, Zhao Y, Xu B, Xie X. O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J Cell Mol Med. 2019;23(2):1354–62. https://doi.org/10.1111/jcmm.14038.

    Article 
    PubMed 

    Google Scholar
     

  • Huang X, Pan Q, Sun D, Chen W, Shen A, Huang M, Ding J, Geng M. O-GlcNAcylation of cofilin promotes breast cancer cell invasion. J Biol Chem. 2013;288(51):36418–25. https://doi.org/10.1074/jbc.M113.495713.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Li G, Zhou Z, Ge C, Chen Q, Liu Y, Zhang N, Zhang K, Niu M, Li W, Zhong X, Wu S, Zhang J, Liu Y. Chromatin-associated OGT promotes the malignant progression of hepatocellular carcinoma by activating ZNF263. Oncogene. 2023;42(30):2329–46. https://doi.org/10.1038/s41388-023-02751-1.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, Xu Z, Xiao Y, Cheng C, Shen A. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology. 2016;26(8):820–33. https://doi.org/10.1093/glycob/cww025.

    Article 
    PubMed 

    Google Scholar
     

  • Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discovery. 2022;21(2):141–62. https://doi.org/10.1038/s41573-021-00339-6.

    Article 
    PubMed 

    Google Scholar
     

  • Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, Shu Y. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90. https://doi.org/10.1186/s13045-019-0776-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikawa T, ME LL, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H. Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci. 2015;72(10):1881–92. https://doi.org/10.1007/s00018-015-1840-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, Liu X, Tao Y, Yin H, Zhou H, Zhou L, Ye D, Ye Q, Gao D. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology (Baltimore MD). 2017;65(2):515–28. https://doi.org/10.1002/hep.28887.

    Article 
    PubMed 

    Google Scholar
     

  • He Y, Wang X, Lu W, Zhang D, Huang L, Luo Y, Xiong L, Li H, Zhang P, Li Q, Liang S. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis. 2022;13(2):118. https://doi.org/10.1038/s41419-022-04576-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang J, Liu C, Xu D, Xie K, Li A. LncRNA NEAT1 facilitates glioma progression via stabilizing PGK1. J Translational Med. 2022;20(1):80. https://doi.org/10.1186/s12967-022-03273-2.

    Article 

    Google Scholar
     

  • Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, Zheng Z, Duan X, Yi W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020;11(1):36. https://doi.org/10.1038/s41467-019-13601-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR 3rd, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene. 2020;39(3):560–73. https://doi.org/10.1038/s41388-019-0975-3.

  • He X, Wu N, Li R, Zhang H, Zhao Y, Nie Y, Wu J. IDH2, a novel target of OGT, facilitates glucose uptake and cellular bioenergy production via NF-κB signaling to promote colorectal cancer progression. Cell Oncol (Dordrecht). 2023;46(1):145–64. https://doi.org/10.1007/s13402-022-00740-2.

    Article 

    Google Scholar
     

  • Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218(1). https://doi.org/10.1084/jem.20201606.

  • Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: lipid metabolism in Antitumoral Therapy Response and Resistance. Trends cancer. 2021;7(3):198–213. https://doi.org/10.1016/j.trecan.2020.10.004.

    Article 
    PubMed 

    Google Scholar
     

  • Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Design. 2014;20(15):2619–26. https://doi.org/10.2174/13816128113199990486.

    Article 

    Google Scholar
     

  • Sodi VL, Bacigalupa ZA, Ferrer CM, Lee JV, Gocal WA, Mukhopadhyay D, Wellen KE, Ivan M, Reginato MJ. Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation. Oncogene. 2018;37(7):924–34. https://doi.org/10.1038/onc.2017.395.

    Article 
    PubMed 

    Google Scholar
     

  • Schug ZT, Vande Voorde J, Gottlieb E. The metabolic fate of acetate in cancer. Nat Rev Cancer. 2016;16(11):708–17. https://doi.org/10.1038/nrc.2016.87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C, Huang Z, Barnett S, Mickey BE, DeBerardinis RJ, Tu BP, Maher EA, Bachoo RM. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14. https://doi.org/10.1016/j.cell.2014.11.025.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciraku L, Bacigalupa ZA, Ju J, Moeller RA, Le Minh G, Lee RH, Smith MD, Ferrer CM, Trefely S, Izzo LT, Doan MT, Gocal WA, D’Agostino L, Shi W, Jackson JG, Katsetos CD, Wellen KE, Snyder NW, Reginato MJ. O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene. 2022;41(14):2122–36. https://doi.org/10.1038/s41388-022-02237-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su KJ, Yu YL. Downregulation of SHIP2 by Hepatitis B Virus X promotes the Metastasis and Chemoresistance of Hepatocellular Carcinoma through SKP2. Cancers. 2019;11(8). https://doi.org/10.3390/cancers11081065.

  • Zhang H, Wang Q, Liu J, Cao H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett. 2018;15(6):9377–84. https://doi.org/10.3892/ol.2018.8536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Reviews Disease Primers. 2016;2:16061. https://doi.org/10.1038/nrdp.2016.61.

    Article 
    PubMed 

    Google Scholar
     

  • Qian L, Yang X, Li S, Zhao H, Gao Y, Zhao S, Lv X, Zhang X, Li L, Zhai L, Zhou F, Chen B. Reduced O-GlcNAcylation of SNAP-23 promotes cisplatin resistance by inducing exosome secretion in ovarian cancer. Cell Death Discovery. 2021;7(1):112. https://doi.org/10.1038/s41420-021-00489-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, Lv X, Li J, Chen B. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics. 2018;8(19):5200–12. https://doi.org/10.7150/thno.27806.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Chen L, Zhu K, Wang D. Oncogenic microRNA-181d binding to OGT contributes to resistance of ovarian cancer cells to cisplatin. Cell Death Discovery. 2021;7(1):379. https://doi.org/10.1038/s41420-021-00715-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447. https://doi.org/10.1016/j.pharmthera.2019.107447.

    Article 
    PubMed 

    Google Scholar
     

  • Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074.

    Article 
    PubMed 

    Google Scholar
     

  • Very N, Hardivillé S, Decourcelle A, Thévenet J, Djouina M, Page A, Vergoten G, Schulz C, Kerr-Conte J, Lefebvre T, Dehennaut V. El Yazidi-Belkoura I. Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene. 2022;41(5):745–56. https://doi.org/10.1038/s41388-021-02121-9.

    Article 
    PubMed 

    Google Scholar
     

  • Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharmacol Toxicol. 2020;60:457–76. https://doi.org/10.1146/annurev-pharmtox-010919-023603.

  • Sekine H, Okazaki K, Kato K, Alam MM, Shima H, Katsuoka F, Tsujita T, Suzuki N, Kobayashi A, Igarashi K, Yamamoto M, Motohashi H. O-GlcNAcylation Signal mediates proteasome inhibitor resistance in Cancer cells by stabilizing NRF1. Mol Cell Biol. 2018;38(17). https://doi.org/10.1128/mcb.00252-18.

  • Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179(2):201–17. https://doi.org/10.1111/bph.15713.

    Article 
    PubMed 

    Google Scholar
     

  • Hattinger CM, Tavanti E, Fanelli M, Vella S, Picci P, Serra M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin Drug Metab Toxicol. 2017;13(3):245–57. https://doi.org/10.1080/17425255.2017.1246532.

    Article 
    PubMed 

    Google Scholar
     

  • Sun MX, An HY, Sun YB, Sun YB, Bai B. LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway. J Orthop Surg Res. 2022;17(1):557. https://doi.org/10.1186/s13018-022-03449-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaeffer EM, Srinivas S, Adra N, An Y, Barocas D, Bitting R, Bryce A, Chapin B, Cheng HH, D’Amico AV, Desai N, Dorff T, Eastham JA, Farrington TA, Gao X, Gupta S, Guzzo T, Ippolito JE, Kuettel MR, Lang JM, Lotan T, McKay RR, Morgan T, Netto G, Pow-Sang JM, Reiter R, Roach M, Robin T, Rosenfeld S, Shabsigh A, Spratt D, Teply BA, Tward J, Valicenti R, Wong JK, Shead DA, Snedeker J, Freedman-Cass DA. Prostate Cancer, Version 4.2023, NCCN Clinical Practice guidelines in Oncology. J Natl Compr Cancer Network: JNCCN. 2023;21(10):1067–96. https://doi.org/10.6004/jnccn.2023.0050.

    Article 
    PubMed 

    Google Scholar
     

  • Xia M, Wang S, Qi Y, Long K, Li E, He L, Pan F, Guo Z, Hu Z. Inhibition of O-GlcNAc transferase sensitizes prostate cancer cells to docetaxel. Front Oncol. 2022;12:993243. https://doi.org/10.3389/fonc.2022.993243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W, Guo CC, Lotan Y, Kassouf W. Bladder cancer. Lancet (London England). 2016;388(10061):2796–810. https://doi.org/10.1016/s0140-6736(16)30512-8.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Chen S, Zhang Z, Zhang J, Mao S, Zheng J, Xuan Y, Liu M, Cai K, Zhang W, Guo Y, Zhai W, Yao X. Suppressed OGT expression inhibits cell proliferation while inducing cell apoptosis in bladder cancer. BMC Cancer. 2018;18(1):1141. https://doi.org/10.1186/s12885-018-5033-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calabrò F, Lorusso V, Rosati G, Manzione L, Frassineti L, Sava T, Di Paula ED, Alonso S, Sternberg CN. Gemcitabine and paclitaxel every 2 weeks in patients with previously untreated urothelial carcinoma. Cancer. 2009;115(12):2652–9. https://doi.org/10.1002/cncr.24313.

    Article 
    PubMed 

    Google Scholar
     

  • Lee HW, Kang MJ, Kwon YJ, Abdi Nansa S, Jung EH, Kim SH, Lee SJ, Jeong KC, Kim Y, Cheong H, Seo HK. Targeted inhibition of O-Linked β-N-Acetylglucosamine transferase as a Promising Therapeutic Strategy to Restore Chemosensitivity and Attenuate Aggressive Tumor traits in Chemoresistant Urothelial Carcinoma of the bladder. Biomedicines. 2022;10(5). https://doi.org/10.3390/biomedicines10051162.

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhammer FA, Buttyan R. Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmcol. 1994;128(2):169–81. https://doi.org/10.1006/taap.1994.1195.

    Article 

    Google Scholar
     

  • Bold RJ, Termuhlen PM, McConkey DJ. Apoptosis, cancer and cancer therapy. Surg Oncol. 1997;6(3):133–42. https://doi.org/10.1016/s0960-7404(97)00015-7.

    Article 
    PubMed 

    Google Scholar
     

  • Evan GI, Brown L, Whyte M, Harrington E. Apoptosis and the cell cycle. Curr Opin Cell Biol. 1995;7(6):825–34. https://doi.org/10.1016/0955-0674(95)80066-2.

    Article 
    PubMed 

    Google Scholar
     

  • Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Experimental Clin cancer Research: CR. 2011;30(1):87. https://doi.org/10.1186/1756-9966-30-87.

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Chang WY, Gong DA, Huang LY, Liu R, Liu Y, Xia J, Wang K, Tang N, Huang AL. O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene. 2023;42(10):725–36. https://doi.org/10.1038/s41388-022-02589-z.

    Article 
    PubMed 

    Google Scholar
     

  • Yu M, Chu S, Fei B, Fang X, Liu Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp Cell Res. 2019;382(2):111464. https://doi.org/10.1016/j.yexcr.2019.06.009.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Wang L, Liu J, Zhang P, An M, Han C, Li Y, Guan X, Zhang K. O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer. Oncogene. 2017;36(45):6293–305. https://doi.org/10.1038/onc.2017.223.

    Article 
    PubMed 

    Google Scholar
     

  • Gao S, Yin H, Tong H, Zhan K, Yang G, Hossain MA, Li T, Gou X, He W. Nucleolar and Spindle Associated Protein 1 (NUSAP1) promotes bladder Cancer Progression through the TGF-β signaling pathway. OncoTargets Therapy. 2020;13:813–25. https://doi.org/10.2147/ott.S237127.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou J, Lu Z, Liu X, Luo B, Qu G, Xu Y, Tang C. Increased NUSAP1 expression is associated with lymph node metastasis and survival prognosis in bladder urothelial carcinoma. Sci Rep. 2022;12(1):7003. https://doi.org/10.1038/s41598-022-11137-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Liu J, Zhang W, Kadier A, Wang R, Zhang H, Yao X. O-GlcNAcylation enhances NUSAP1 Stability and promotes bladder Cancer aggressiveness. OncoTargets Therapy. 2021;14:445–54. https://doi.org/10.2147/ott.S258175.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. https://doi.org/10.1016/j.lfs.2019.116781.

    Article 
    PubMed 

    Google Scholar
     

  • Kharkar PS. Cancer stem cell (CSC) inhibitors: a review of recent patents (2012–2015). Expert Opin Ther Pat. 2017;27(7):753–61. https://doi.org/10.1080/13543776.2017.1325465.

    Article 
    PubMed 

    Google Scholar
     

  • Gauthier A, Ho M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatol Research: Official J Japan Soc Hepatol. 2013;43(2):147–54. https://doi.org/10.1111/j.1872-034X.2012.01113.x.

    Article 

    Google Scholar
     

  • Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. HDLBP promotes Hepatocellular Carcinoma Proliferation and Sorafenib Resistance by suppressing Trim71-dependent RAF1 degradation. Cell Mol Gastroenterol Hepatol. 2023;15(2):307–25. https://doi.org/10.1016/j.jcmgh.2022.10.005.

    Article 
    PubMed 

    Google Scholar
     

  • Cao B, Duan M, Xing Y, Liu C, Yang F, Li Y, Yang T, Wei Y, Gao Q, Jiang J. O-GlcNAc transferase activates stem-like cell potential in hepatocarcinoma through O-GlcNAcylation of eukaryotic initiation factor 4E. J Cell Mol Med. 2019;23(4):2384–98. https://doi.org/10.1111/jcmm.14043.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Minh G, Esquea EM, Dhameliya TT, Merzy J, Lee MH, Ball LE, Reginato MJ. Kruppel-like factor 8 regulates triple negative breast cancer stem cell-like activity. Front Oncol. 2023;13:1141834. https://doi.org/10.3389/fonc.2023.1141834.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang C, Zhang X, Yang M, Dong X. Recent progress in Ferroptosis Inducers for Cancer Therapy. Advanced materials (Deerfield Beach. Fla). 2019;31(51):e1904197. https://doi.org/10.1002/adma.201904197.

    Article 

    Google Scholar
     

  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82. https://doi.org/10.1038/s41580-020-00324-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052–9. https://doi.org/10.7150/thno.54113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latunde-Dada GO, Ferroptosis. Role of lipid peroxidation, iron and ferritinophagy. Biochimica et biophysica acta General subjects. 2017;1861(8):1893–900. https://doi.org/10.1016/j.bbagen.2017.05.019

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79. https://doi.org/10.1038/cdd.2015.158.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5.

    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4. https://doi.org/10.1038/s41586-019-1170-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. Targeting USP8 inhibits O-GlcNAcylation of SLC7A11 to promote Ferroptosis of Hepatocellular Carcinoma via stabilization of OGT. Adv Sci (Weinheim Baden-Wurttemberg Germany). 2023;10(33):e2302953. https://doi.org/10.1002/advs.202302953.

    Article 

    Google Scholar
     

  • Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR, Hypoxia. Hypoxia-inducible transcription factors, and Renal Cancer. Eur Urol. 2016;69(4):646–57. https://doi.org/10.1016/j.eururo.2015.08.007.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Z, Wei X, Ji C, Ren X, Su W, Wang Y, Zhou J, Zhao Z, Zhou P, Zhao K, Yao B, Song N, Qin C. OGT/HIF-2α axis promotes the progression of clear cell renal cell carcinoma and regulates its sensitivity to ferroptosis. iScience. 2023;26(11):108148. https://doi.org/10.1016/j.isci.2023.108148.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. https://doi.org/10.1002/path.2697.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Yao S, Yang H, Liu S, Wang Y, Autophagy. Regulator of cell death. Cell Death Dis. 2023;14(10):648. https://doi.org/10.1038/s41419-023-06154-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganzleben I, Neurath MF, Becker C. Autophagy in Cancer Therapy-Molecular mechanisms and current clinical advances. Cancers. 2021;13(21). https://doi.org/10.3390/cancers13215575.

  • Jin L, Yuan F, Dai G, Yao Q, Xiang H, Wang L, Xue B, Shan Y, Liu X. Blockage of O-linked GlcNAcylation induces AMPK-dependent autophagy in bladder cancer cells. Cell Mol Biol Lett. 2020;25:17. https://doi.org/10.1186/s11658-020-00208-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune escape strategies in Head and Neck Cancer: evade, resist, inhibit, Recruit. Cancers. 2024;16(2). https://doi.org/10.3390/cancers16020312.

  • Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018;18(1):556. https://doi.org/10.1186/s12885-018-4441-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms Controlling PD-L1 expression in Cancer. Mol Cell. 2019;76(3):359–70. https://doi.org/10.1016/j.molcel.2019.09.030.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaikwad S, Agrawal MY, Kaushik I, Ramachandran S, Srivastava SK. Immune checkpoint proteins: signaling mechanisms and molecular interactions in cancer immunotherapy. Sem Cancer Biol. 2022;86(Pt 3):137–50. https://doi.org/10.1016/j.semcancer.2022.03.014.

    Article 

    Google Scholar
     

  • Zhu Q, Wang H, Chai S, Xu L, Lin B, Yi W, Wu L. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci USA. 2023;120(13):e2216796120. https://doi.org/10.1073/pnas.2216796120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Wang L, Ge D, Tan L, Cao B, Fan H, Xue L. Exosomal O-GlcNAc transferase from esophageal carcinoma stem cell promotes cancer immunosuppression through up-regulation of PD-1 in CD8(+) T cells. Cancer Lett. 2021;500:98–106. https://doi.org/10.1016/j.canlet.2020.12.012.

    Article 
    PubMed 

    Google Scholar
     

  • Ali A, Kim MJ, Kim MY, Lee HJ, Roh GS, Kim HJ, Cho GJ, Choi WS. Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase. Anat cell Biology. 2018;51(4):274–83. https://doi.org/10.5115/acb.2018.51.4.274.

    Article 

    Google Scholar
     

  • Zhang C, Niu Y, Wang Z, Xu X, Li Y, Ma L, Wang J, Yu Y. Corosolic acid inhibits cancer progression by decreasing the level of CDK19-mediated O-GlcNAcylation in liver cancer cells. Cell Death Dis. 2021;12(10):889. https://doi.org/10.1038/s41419-021-04164-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ, Walker S. A small molecule that inhibits OGT activity in cells. ACS Chem Biol. 2015;10(6):1392–7. https://doi.org/10.1021/acschembio.5b00004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loi EM, Weiss M, Pajk S, Gobec M, Tomašič T, Pieters RJ, Anderluh M. Intracellular hydrolysis of small-molecule O-Linked N-Acetylglucosamine transferase inhibitors differs among cells and is not required for its inhibition. Molecules. 2020;25(15). https://doi.org/10.3390/molecules25153381.

  • Li M, Duan F, Pan Z, Liu X, Lu W, Liang C, Fang Z, Peng P, Jia D. Astragalus Polysaccharide promotes Doxorubicin-Induced apoptosis by reducing O-GlcNAcylation in Hepatocellular Carcinoma. Cells. 2023;12(6). https://doi.org/10.3390/cells12060866.

  • Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How nanotechniques could vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomed. 2022;17:1829–41. https://doi.org/10.2147/ijn.S360488.

    Article 

    Google Scholar
     



  • Source link