Scientific Papers

Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer | Cell Communication and Signaling


  • Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Reviews Disease Primers. 2016;2(1):1–22.


    Google Scholar
     

  • Shaik B, Zafar T, Balasubramanian K, Gupta SP. An overview of ovarian cancer: molecular processes involved and development of target-based chemotherapeutics. Curr Top Med Chem. 2021;21(4):329–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol. 2017;38(7):526–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yeung T-L, Leung CS, Yip K-P, Yeung CLA, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiology-Cell Physiol. 2015.

  • Nagle C, Dixon S, Jensen A, Kjaer S, Modugno F, DeFazio A, et al. Obesity and survival among women with ovarian cancer: results from the ovarian cancer association consortium. Br J Cancer. 2015;113(5):817–26.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Olsen CM, Green AC, Whiteman DC, Sadeghi S, Kolahdooz F, Webb PM. Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. Eur J Cancer. 2007;43(4):690–709.

    Article 
    PubMed 

    Google Scholar
     

  • Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends cancer. 2018;4(5):374–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gunderson CC, Ding K, Dvorak J, Moore KN, McMeekin DS, Benbrook DM. The pro-inflammatory effect of obesity on high grade serous ovarian cancer. Gynecol Oncol. 2016;143(1):40–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Giornelli GH. Management of relapsed ovarian cancer: a review. Springerplus. 2016;5(1):1197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowicka A, Marini FC, Solley TN, Elizondo PB, Zhang Y, Sharp HJ, et al. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS ONE. 2013;8(12):e81859.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salimian Rizi B, Caneba C, Nowicka A, Nabiyar AW, Liu X, Chen K, et al. Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells. Cancer Res. 2015;75(2):456–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang J, Zaman MM, Vlasakov I, Roy R, Huang L, Martin CR, et al. Adipocytes promote ovarian cancer chemoresistance. Sci Rep. 2019;9(1):13316.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee A, Chiang C-Y, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, et al. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 2020;80(8):1748–61.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nath S, Pigula M, Khan AP, Hanna W, Ruhi MK, Dehkordy FM, et al. Flow-induced shear stress confers resistance to carboplatin in an adherent three-dimensional model for ovarian cancer: a role for EGFR-targeted photoimmunotherapy informed by physical stress. J Clin Med. 2020;9(4):924.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2017;2(4).

  • Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20(3):303–14. e5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda S-i, Kato T, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 2017;8(1):14470.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Au Yeung CL, Co N-N, Tsuruga T, Yeung T-L, Kwan S-Y, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7(1):11150.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed N, Abubaker K, Findlay J, Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets. 2010;10(3):268–78.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Saburi A, Kahrizi MS, Naghsh N, Etemadi H, İlhan A, Adili A, et al. A comprehensive survey into the role of microRNAs in ovarian cancer chemoresistance; an updated overview. J Ovarian Res. 2022;15(1):1–14.

    Article 

    Google Scholar
     

  • Miranda F, Mannion D, Liu S, Zheng Y, Mangala LS, Redondo C, et al. Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell. 2016;30(2):273–89.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285–301.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Dong W, Wang J, Cai J, Wang Z. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. OncoTargets Therapy. 2017;10:1655.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim et Biophys Acta (BBA)-Molecular Cell Biology Lipids. 2013;1831(10):1533–41.

    CAS 

    Google Scholar
     

  • Chen RR, Yung MM, Xuan Y, Zhan S, Leung LL, Liang RR, et al. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biology. 2019;2(1):281.

    Article 

    Google Scholar
     

  • Matte I, Legault CM, Garde-Granger P, Laplante C, Bessette P, Rancourt C, et al. Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions. Clin Exp Metastasis. 2016;33:839–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shishido A, Mori S, Yokoyama Y, Hamada Y, Minami K, Qian Y, et al. Mesothelial cells facilitate cancer stem–like properties in spheroids of ovarian cancer cells. Oncol Rep. 2018;40(4):2105–14.

    PubMed 
    CAS 

    Google Scholar
     

  • Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastasis of ovarian cancer. J Exp Med. 2019;216(3):688–703.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Investig. 2016;126(11):4157–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv. 2016;34(8):1427–41.

    Article 
    PubMed 

    Google Scholar
     

  • Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors; 2012.

  • Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:1–10.

    Article 

    Google Scholar
     

  • Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res. 2008;68(7):2329–39.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591–613.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Yang J, Wang X, Liang J, Xing H. Role of TWIST2, E-cadherin and Vimentin in epithelial ovarian carcinogenesis and prognosis and their interaction in cancer progression. Eur J Gynaecol Oncol. 2016;37(1):100–8.

    PubMed 

    Google Scholar
     

  • Shield K, Ackland ML, Ahmed N, Rice GE. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol. 2009;113(1):143–8.

    Article 
    PubMed 

    Google Scholar
     

  • Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS ONE. 2014;9(1):e84941.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh M-T, et al. Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers. 2021;13(19):4985.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han X, Zhou Y, You Y, Lu J, Wang L, Hou H, et al. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer. Cell Biol Int. 2017;41(4):405–14.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pujade-Lauraine E, Banerjee S, Pignata S. Management of platinum-resistant, relapsed epithelial ovarian cancer and new drug perspectives. J Clin Oncol. 2019;37(27):2437–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bach DH, Hong JY, Park HJ, Lee SK. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;141(2):220–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tian W, Lei N, Zhou J, Chen M, Guo R, Qin B, et al. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis. 2022;13(1):64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jafari N, Kolla M, Meshulam T, Shafran JS, Qiu Y, Casey AN, et al. Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes. Sci Signal. 2021;14(710):eabj2807.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang S, Su X, Xu M, Xiao X, Li X, Li H, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther. 2019;10:1–12.

    Article 

    Google Scholar
     

  • Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote Melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and CancerAdipocyte exosomes: a new link between obesity and Cancer. Cancer Res. 2016;76(14):4051–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Reviews Endocrinol. 2014;10(8):455–65.

    Article 
    CAS 

    Google Scholar
     

  • Brown KA, Scherer PE. Update on adipose tissue and cancer. Endocr Rev. 2023;44(6):961–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist. 2010;15(6):556–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Yang Y, Xiang L, Zhao Z, Ye R. Adipose-derived exosomes: a novel adipokine in obesity‐associated diabetes. J Cell Physiol. 2019;234(10):16692–702.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, et al. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun. 2014;445(2):327–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wen Z, Li J, Fu Y, Zheng Y, Ma M, Wang C. Hypertrophic adipocyte–derived exosomal mir-802‐5p contributes to Insulin Resistance in Cardiac myocytes through Targeting HSP60. Obesity. 2020;28(10):1932–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang H, Kong W, He L, Zhao J-J, O’Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Koutsaki M, Spandidos DA, Zaravinos A. Epithelial–mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett. 2014;351(2):173–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12:1–15.

    Article 

    Google Scholar
     

  • Laurent V, Guérard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 2016;7(1):10230.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, inflammation, and prostate cancer. J Clin Med. 2019;8(2):201.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakamura K, Hongo A, Kodama J, Hiramatsu Y. Fat accumulation in adipose tissues as a risk factor for the development of endometrial cancer. Oncol Rep. 2011;26(1):65–71.

    PubMed 

    Google Scholar
     

  • Moukarzel LA, Ferrando L, Stylianou A, Lobaugh S, Wu M, Nobre SP, et al. Impact of obesity and white adipose tissue inflammation on the omental microenvironment in endometrial cancer. Cancer. 2022;128(18):3297–309.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ben-Jonathan N, Liby K, McFarland M, Zinger M. Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol Metabolism. 2002;13(6):245–50.

    Article 
    CAS 

    Google Scholar
     

  • Vonderhaar B. Prolactin involvement in breast cancer. Endocrine-related Cancer. 1999;6(3):389–404.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alkharusi A, AlMuslahi A, AlBalushi N, AlAjmi R, AlRawahi S, AlFarqani A, et al. Connections between prolactin and ovarian cancer. PLoS ONE. 2021;16(8):e0255701.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yurkovetsky Z, Ta’asan S, Skates S, Rand A, Lomakin A, Linkov F, et al. Development of multimarker panel for early detection of endometrial cancer. High diagnostic power of prolactin. Gynecol Oncol. 2007;107(1):58–65.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Levina VV, Nolen B, Su Y, Godwin AK, Fishman D, Liu J, et al. Biological significance of prolactin in gynecologic cancers. Cancer Res. 2009;69(12):5226–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jacobson EM, Hugo ER, Borcherding DC, Ben-Jonathan N. Prolactin in breast and prostate cancer: molecular and genetic perspectives. Discov Med. 2011;11(59):315–24.

    PubMed 

    Google Scholar
     

  • Yue P, Zhang X, Paladino D, Sengupta B, Ahmad S, Holloway RW, et al. Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene. 2012;31(18):2309–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J, et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer. 2009;100(1):134–44.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Abubaker K, Luwor RB, Escalona R, McNally O, Quinn MA, Thompson EW, et al. Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem cells leading to a reduced tumor burden. Front Oncol. 2014;4:75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Chen Y, Tian R, Li J, Li H, Lv T, et al. miRNA-21 enhances chemoresistance to cisplatin in epithelial ovarian cancer by negatively regulating PTEN. Oncol Lett. 2017;14(2):1807–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, et al. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 2021;518:35–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo F, Tian J, Lin Y, Jin Y, Wang L, Cui M. Serum microRNA-92 expression in patients with ovarian epithelial carcinoma. J Int Med Res. 2013;41(5):1456–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Olive V, Jiang I, He L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol. 2010;42(8):1348–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Z-l, Zhao X-h, Wang J-w, Li B-z, Wang Z, Sun J, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem. 2011;286(12):10725–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Busch B, Bley N, Müller S, Glaß M, Misiak D, Lederer M, et al. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family. Nucleic Acids Res. 2016;44(8):3845–64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14(9):2690–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu Z, Kim J, He L, Creighton CJ, Gunaratne PH, Hawkins SM, et al. Functional analysis of miR-34c as a putative tumor suppressor in high-grade serous ovarian cancer. Biol Reprod. 2014;91(5):113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto CM, Oakes ML, Murakami T, Muto MG, Berkowitz RS, Ng S-W. Comparison of benign peritoneal fluid-and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res. 2018;11:1–9.

    Article 

    Google Scholar
     

  • Tang Z, Ow GS, Thiery JP, Ivshina AV, Kuznetsov VA. Meta-analysis of transcriptome reveals let‐7b as an unfavorable prognostic biomarker and predicts molecular and clinical subclasses in high‐grade serous ovarian carcinoma. Int J Cancer. 2014;134(2):306–18.

    Article 
    PubMed 

    Google Scholar
     

  • Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer. 2019;18:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Daquinag AC, Dadbin A, Snyder B, Wang X, Sahin AA, Ueno NT, et al. Non-glycanated decorin is a drug target on human adipose stromal cells. Mol Therapy-Oncolytics. 2017;6:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Daquinag AC, Tseng C, Zhang Y, Amaya-Manzanares F, Florez F, Dadbin A, et al. Targeted proapoptotic peptides depleting adipose stromal cells inhibit tumor growth. Mol Ther. 2016;24(1):34–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link