Scientific Papers

Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach | BMC Medical Imaging


  • Kerr KM. Pulmonary adenocarcinomas: classification and reporting. Histopathology. 2009;54(1):12–27. https://doi.org/10.1111/j.1365-2559.2008.03176.x.

    Article 
    PubMed 

    Google Scholar
     

  • Kobayashi Y, Mitsudomi T. Management of ground-glass opacities: should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res. 2013;2(5):354–63. https://doi.org/10.3978/j.issn.2218-6751.2013.09.03.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722. https://doi.org/10.1148/radiol.2462070712.

    Article 
    PubMed 

    Google Scholar
     

  • Russell PA, Barnett SA, Walkiewicz M, Wainer Z, Conron M, Wright GM, Gooi J, Knight S, Wynne R, Liew D, et al. Correlation of mutation status and survival with predominant histologic subtype according to the New IASLC/ATS/ERS Lung Adenocarcinoma classification in stage III (N2) patients. J Thorac Oncol. 2013;8(4):461–8. https://doi.org/10.1097/JTO.0b013e3182828fb8.

    Article 
    PubMed 

    Google Scholar
     

  • Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, Park BJ, Rusch VW, Travis WD. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol. 2011;24(5):653–64. https://doi.org/10.1038/modpathol.2010.232.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mansuet-Lupo A, Bobbio A, Blons H, Becht E, Ouakrim H, Didelot A, Charpentier M-C, Bain S, Marmey B, Bonjour P, et al. The new histologic classification of lung primary adenocarcinoma subtypes is a Reliable Prognostic marker and identifies tumors with different mutation status: the experience of a French cohort. Chest. 2014;146(3):633–43. https://doi.org/10.1378/chest.13-2499.

    Article 
    PubMed 

    Google Scholar
     

  • Yanagawa N, Shiono S, Abiko M, Ogata S-y, Sato T, Tamura G. New IASLC/ATS/ERS classification and invasive tumor size are predictive of Disease Recurrence in Stage I Lung Adenocarcinoma. J Thorac Oncol. 2013;8(5):612–8. https://doi.org/10.1097/JTO.0b013e318287c3eb.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Ma X, Shen X, Wang S, Li Y, Hu H, Chen H. Surgery for pre- and minimally invasive lung adenocarcinoma. J Thorac Cardiovasc Surg. 2022;163(2):456–64. https://doi.org/10.1016/j.jtcvs.2020.11.151.

    Article 
    PubMed 

    Google Scholar
     

  • Tsutani Y, Miyata Y, Nakayama H, Okumura S, Adachi S, Yoshimura M, Okada M. Appropriate sublobar resection choice for ground glass opacity-dominant clinical stage IA lung adenocarcinoma: wedge resection or segmentectomy. Chest. 2014;145(1):66–71. https://doi.org/10.1378/chest.13-1094.

    Article 
    PubMed 

    Google Scholar
     

  • Park CM, Goo JM, Lee HJ, Kim KG, Kang M-J, Shin YH. Persistent pure ground-glass nodules in the lung: interscan variability of Semiautomated volume and attenuation measurements. Am J Roentgenol. 2010;195(6):W408–14. https://doi.org/10.2214/ajr.09.4157.

    Article 

    Google Scholar
     

  • Ko JP, Rusinek H, Jacobs EL, Babb JS, Betke M, McGuinness G, Naidich DP. Small pulmonary nodules: volume measurement at chest CT—Phantom Study. Radiology. 2003;228(3):864–70. https://doi.org/10.1148/radiol.2283020059.

    Article 
    PubMed 

    Google Scholar
     

  • Chandrasekar V, Ansari MY, Singh AV, Uddin S, Prabhu KS, Dash S, Al Khodor S, Terranegra A, Avella M, Dakua SP. Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access. 2023;11:52726–39.

    Article 

    Google Scholar
     

  • Ansari MY, Chandrasekar V, Singh AV, Dakua SP. Re-routing drugs to blood brain barrier: a comprehensive analysis of machine learning approaches with fingerprint amalgamation and data balancing. IEEE Access. 2022;11:9890–906.

    Article 

    Google Scholar
     

  • Ansari MY, Qaraqe M, Charafeddine F, Serpedin E, Righetti R, Qaraqe K. Estimating age and gender from electrocardiogram signals: a comprehensive review of the past decade. Artif Intell Med 2023, 146:102690. https://doi.org/10.1016/j.artmed.2023.102690

  • Ansari MY, Qaraqe M. Mefood: a large-scale representative benchmark of quotidian foods for the middle east. IEEE Access. 2023;11:4589–601.

    Article 

    Google Scholar
     

  • Ansari MY, Qaraqe M, Righetti R, Serpedin E, Qaraqe K. Enhancing ECG-based heart age: impact of acquisition parameters and generalization strategies for varying signal morphologies and corruptions. Front Cardiovasc Med. 2024;11:1424585. https://doi.org/10.3389/fcvm.2024.1424585.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Z, Jian M, Wang G-G. ConvUNeXt: an efficient convolution neural network for medical image segmentation. Knowl Based Syst. 2022;253:109512.

    Article 

    Google Scholar
     

  • Ansari MY, Mohanty S, Mathew SJ, Mishra S, Singh SS, Abinahed J, Al-Ansari A, Dakua SP. Towards developing a lightweight neural network for liver CT segmentation. 2023; Singapore. Springer Nature Singapore; 2023. pp. 27–35.

  • Jafari M, Auer D, Francis S, Garibaldi J, Chen X. DRU-Net: An Efficient Deep Convolutional Neural Network for Medical Image Segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI): 3–7 April 2020 2020; 2020: 1144–1148.

  • Ansari MY, Mangalote IAC, Masri D, Dakua SP. Neural Network-based Fast Liver Ultrasound Image Segmentation. In: 2023 International Joint Conference on Neural Networks (IJCNN): 18–23 June 2023 2023; 2023: 1–8.

  • Xie Y, Zhang J, Shen C, Xia Y. CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation. Medical Image Computing and Computer assisted intervention – MICCAI 2021: 2021// 2021; Cham. Springer International Publishing; 2021. pp. 171–80.

  • Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, Mishra S, Singh SS, Abinahed J, Al-Ansari A, et al. Practical utility of liver segmentation methods in clinical surgeries and interventions. BMC Med Imaging. 2022;22(1):97. https://doi.org/10.1186/s12880-022-00825-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhtar Y, Dakua SP, Abdalla A, Aboumarzouk OM, Ansari MY, Abinahed J, Elakkad MSM, Al-Ansari A. Risk Assessment of computer-aided Diagnostic Software for hepatic resection. IEEE Trans Radiation Plasma Med Sci. 2022;6(6):667–77. https://doi.org/10.1109/TRPMS.2021.3071148.

    Article 

    Google Scholar
     

  • Rai P, Ansari MY, Warfa M, Al-Hamar H, Abinahed J, Barah A, Dakua SP, Balakrishnan S. Efficacy of fusion imaging for immediate post-ablation assessment of malignant liver neoplasms: a systematic review. Cancer Med 2023, 12(13):14225–51. https://doi.org/10.1002/cam4.6089

  • Ansari MY, Mangalote IAC, Meher PK, Aboumarzouk O, Al-Ansari A, Halabi O, Dakua SP. Advancements in Deep Learning for B-Mode Ultrasound Segmentation: a Comprehensive Review. IEEE Trans Emerg Top Comput Intell. 2024;8(3):2126–49. https://doi.org/10.1109/TETCI.2024.3377676.

    Article 

    Google Scholar
     

  • Ansari MY, Qaraqe M, Righetti R, Serpedin E, Qaraqe K. Unveiling the future of breast cancer assessment: a critical review on generative adversarial networks in elastography ultrasound. Front Oncol. 2023;13:1282536. https://doi.org/10.3389/fonc.2023.1282536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar Singh L, Khanna M, singh R. A novel enhanced hybrid clinical decision support system for accurate breast cancer prediction. Measurement. 2023;221:113525. https://doi.org/10.1016/j.measurement.2023.113525.

    Article 

    Google Scholar
     

  • Singh LK, Pooja, Garg H, Khanna M. An Artificial Intelligence-Based Smart System for Early Glaucoma Recognition Using OCT Images. In: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention. edn. Edited by Management Association IR. Hershey, PA, USA: IGI Global; 2023: 1424–1454.

  • Singh LK, Garg H, Pooja. Automated Glaucoma Type Identification Using Machine Learning or Deep Learning Techniques. In: Advancement of Machine Intelligence in Interactive Medical Image Analysis. edn. Edited by Verma OP, Roy S, Pandey SC, Mittal M. Singapore: Springer Singapore; 2020: 241–263.

  • Singh LK, Khanna M, Garg H. Multimodal Biometric based on Fusion of Ridge features with Minutiae features and face features. Int J Inform Syst Model Des (IJISMD). 2020;11(1):37–57. https://doi.org/10.4018/IJISMD.2020010103.

    Article 

    Google Scholar
     

  • Singh LK, Khanna M, Thawkar S, Singh R. Nature-inspired computing and machine learning based classification approach for glaucoma in retinal fundus images. Multimedia Tools Appl. 2023;82(27):42851–99.

    Article 

    Google Scholar
     

  • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6. https://doi.org/10.1016/j.ejca.2011.11.036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges of image analysis. Eur Radiol Experimental. 2018;2(1):36. https://doi.org/10.1186/s41747-018-0068-z.

    Article 

    Google Scholar
     

  • Yagi T, Yamazaki M, Ohashi R, Ogawa R, Ishikawa H, Yoshimura N, Tsuchida M, Ajioka Y, Aoyama H. HRCT texture analysis for pure or part-solid ground-glass nodules: distinguishability of adenocarcinoma in situ or minimally invasive adenocarcinoma from invasive adenocarcinoma. Jpn J Radiol. 2018;36(2):113–21. https://doi.org/10.1007/s11604-017-0711-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chae HD, Park CM, Park SJ, Lee SM, Kim KG, Goo JM. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273(1):285–93. https://doi.org/10.1148/radiol.14132187.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SM, Park CM, Goo JM, Lee HJ, Wi JY, Kang CH. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013;268(1):265–73. https://doi.org/10.1148/radiol.13120949.

    Article 
    PubMed 

    Google Scholar
     

  • She Y, Zhang L, Zhu H, Dai C, Xie D, Xie H, Zhang W, Zhao L, Zou L, Fei K, et al. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur Radiol. 2018;28(12):5121–8. https://doi.org/10.1007/s00330-018-5509-9.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Ye W, Li Z, Chen C, Cheng S, Lv X, Weng W, Li J, Weng Q, Pang P, et al. Non-invasive evaluation for benign and malignant subcentimeter pulmonary ground-glass nodules (≤ 1 cm) based on CT texture analysis. Br J Radiol. 2020;93(1114):20190762. https://doi.org/10.1259/bjr.20190762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao W, Xu Y, Yang Z, Sun Y, Li C, Jin L, Gao P, He W, Wang P, Shi H, et al. Development and validation of a radiomics nomogram for identifying invasiveness of pulmonary adenocarcinomas appearing as subcentimeter ground-glass opacity nodules. Eur J Radiol. 2019;112:161–8. https://doi.org/10.1016/j.ejrad.2019.01.021.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Gong J, Zhou W, Li H, Wang S, Wei M, Peng W, Gu Y. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Phys Med Biol. 2021;66(6):065015. https://doi.org/10.1088/1361-6560/abe735.

    Article 
    PubMed 

    Google Scholar
     

  • Mei X, Wang R, Yang W, Qian F, Ye X, Zhu L, Chen Q, Han B, Deyer T, Zeng J, et al. Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest. J Thorac Dis. 2018;10(1):458–63. https://doi.org/10.21037/jtd.2018.01.88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Li C, Jin L, Gao P, Zhao W, Ma W, Tan M, Wu W, Duan S, Shan Y, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Eur Radiol. 2020;30(7):3650–9. https://doi.org/10.1007/s00330-020-06776-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational Radiomics System to Decode the Radiographic phenotype. Cancer Res. 2017;77(21):e104–7. https://doi.org/10.1158/0008-5472.Can-17-0339.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.

    Article 

    Google Scholar
     

  • Ohde Y, Nagai K, Yoshida J, Nishimura M, Takahashi K, Suzuki K, Takamochi K, Yokose T, Nishiwaki Y. The proportion of consolidation to ground-glass opacity on high resolution CT is a good predictor for distinguishing the population of non-invasive peripheral adenocarcinoma. Lung Cancer. 2003;42(3):303–10. https://doi.org/10.1016/j.lungcan.2003.07.001.

    Article 
    PubMed 

    Google Scholar
     

  • Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266(1):326–36. https://doi.org/10.1148/radiol.12112428.

    Article 
    PubMed 

    Google Scholar
     

  • Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process. 1975;4(2):172–9. https://doi.org/10.1016/S0146-664X(75)80008-6.

    Article 

    Google Scholar
     

  • Ost DE, Gould MK. Decision making in patients with pulmonary nodules. Am J Respir Crit Care Med. 2012;185(4):363–72. https://doi.org/10.1164/rccm.201104-0679CI.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang L, Zhang H, Lei H, Zhou H, Wu Y, Shen J. Diagnosis of Benign and Malignant Pulmonary Ground-Glass nodules using computed Tomography Radiomics parameters. Technol Cancer Res Treat. 2022;21:15330338221119748. https://doi.org/10.1177/15330338221119748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi L, Shi W, Peng X, Zhan Y, Zhou L, Wang Y, Feng M, Zhao J, Shan F, Liu L. Development and Validation a Nomogram Incorporating CT Radiomics Signatures and Radiological features for differentiating Invasive Adenocarcinoma from Adenocarcinoma in situ and minimally invasive adenocarcinoma presenting as ground-glass nodules measuring 5-10 mm in Diameter. Front Oncol. 2021;11:618677. https://doi.org/10.3389/fonc.2021.618677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng H, Zhang H, Wang S, Xiao F, Liao M. Invasive prediction of Ground Glass Nodule based on clinical characteristics and Radiomics feature. Front Genet. 2021;12:783391. https://doi.org/10.3389/fgene.2021.783391.

    Article 
    PubMed 

    Google Scholar
     

  • Feng H, Shi G, Xu Q, Ren J, Wang L, Cai X. Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas. Insights Imaging. 2023;14(1):24. https://doi.org/10.1186/s13244-022-01363-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarica A, Cerasa A, Quattrone A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: a systematic review. Front Aging Neurosci. 2017;9:329. https://doi.org/10.3389/fnagi.2017.00329.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to Radiomics. J Nucl Med. 2020;61(4):488–95. https://doi.org/10.2967/jnumed.118.222893.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng F, Guo Y, Li M, Lu X, Wang S, Zhang L, Zhang H. Radiomics nomogram: a noninvasive tool for preoperative evaluation of the invasiveness of pulmonary adenocarcinomas manifesting as ground-glass nodules. Transl Oncol. 2021;14(1):100936. https://doi.org/10.1016/j.tranon.2020.100936.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Deng H, Li Z, Xiong Z, Zhou T, Ge Y, Zhang J, Jing W, Geng Y, Wang X, et al. Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules. Front Oncol. 2023;13:1255007. https://doi.org/10.3389/fonc.2023.1255007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Han X, Jia X, Ding C, Zhang K, Li H, Cao X, Zhang X, Zhang X, Shi H. Dual-energy CT-based radiomics for predicting invasiveness of lung adenocarcinoma appearing as ground-glass nodules. Front Oncol. 2023;13:1208758. https://doi.org/10.3389/fonc.2023.1208758.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu G, Woodruff HC, Sanduleanu S, Refaee T, Jochems A, Leijenaar R, Gietema H, Shen J, Wang R, Xiong J, et al. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Eur Radiol. 2020;30(5):2680–91. https://doi.org/10.1007/s00330-019-06597-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia TY, Xiong JF, Li XY, Yu W, Xu ZY, Cai XW, Ma JC, Ren YC, Larsson R, Zhang J, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol. 2019;29(9):4742–50. https://doi.org/10.1007/s00330-019-06024-y.

    Article 
    PubMed 

    Google Scholar
     

  • Sakurai H, Nakagawa K, Watanabe S-i, Asamura H. Clinicopathologic features of resected subcentimeter lung cancer. Ann Thorac Surg. 2015;99(5):1731–8.

    Article 
    PubMed 

    Google Scholar
     

  • Geng P, Tan Z, Wang Y, Jia W, Zhang Y, Yan H. STCNet: alternating CNN and improved transformer network for COVID-19 CT image segmentation. Biomed Signal Process Control. 2024;93:106205.

    Article 

    Google Scholar
     

  • Geng P, Lu J, Zhang Y, Ma S, Tang Z, Liu J. TC-Fuse: a transformers Fusing CNNs Network for Medical Image Segmentation. CMES-Computer Model Eng Sci. 2023;137(2):2001–23.


    Google Scholar
     



  • Source link