Scientific Papers

Ferroptosis in radiation-induced brain injury: roles and clinical implications | BioMedical Engineering OnLine


  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82. https://doi.org/10.1038/s41580-020-00324-8.

    Article 

    Google Scholar
     

  • Weaver K, Skouta R. The selenoprotein glutathione peroxidase 4: from molecular mechanisms to novel therapeutic opportunities. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10040891.

    Article 

    Google Scholar
     

  • Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982;710:197–211. https://doi.org/10.1016/0005-2760(82)90150-3.

    Article 

    Google Scholar
     

  • Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830:3289–303. https://doi.org/10.1016/j.bbagen.2012.11.020.

    Article 

    Google Scholar
     

  • Friedmann Angeli JP, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91. https://doi.org/10.1038/ncb3064.

    Article 

    Google Scholar
     

  • Yang CZ, et al. Elevated level of serum growth differentiation factor 15 is associated with oral leukoplakia and oral squamous cell carcinoma. J Oral Pathol Med. 2014;43:28–34. https://doi.org/10.1111/jop.12091.

    Article 

    Google Scholar
     

  • Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31: e1904197. https://doi.org/10.1002/adma.201904197.

    Article 

    Google Scholar
     

  • Eaton JK, Furst L, Cai LL, Viswanathan VS, Schreiber SL. Structure-activity relationships of GPX4 inhibitor warheads. Bioorg Med Chem Lett. 2020;30: 127538. https://doi.org/10.1016/j.bmcl.2020.127538.

    Article 

    Google Scholar
     

  • Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76. https://doi.org/10.1016/j.tcb.2015.10.014.

    Article 

    Google Scholar
     

  • Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article 

    Google Scholar
     

  • Yan HF, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49. https://doi.org/10.1038/s41392-020-00428-9.

    Article 

    Google Scholar
     

  • Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017;21:648–57. https://doi.org/10.1111/jcmm.13008.

    Article 

    Google Scholar
     

  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85. https://doi.org/10.1016/j.freeradbiomed.2020.02.027.

    Article 

    Google Scholar
     

  • Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143–53. https://doi.org/10.1016/j.bbagen.2012.09.008.

    Article 

    Google Scholar
     

  • Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30:42–59. https://doi.org/10.1016/j.mam.2008.05.005.

    Article 

    Google Scholar
     

  • Yant LJ, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med. 2003;34:496–502. https://doi.org/10.1016/s0891-5849(02)01360-6.

    Article 

    Google Scholar
     

  • Parker JL, et al. Molecular basis for redox control by the human cystine/glutamate antiporter system xc(). Nat Commun. 2021;12:7147. https://doi.org/10.1038/s41467-021-27414-1.

    Article 

    Google Scholar
     

  • Li S, et al. The role of SLC7A11 in cancer: friend or foe? Cancers. 2022. https://doi.org/10.3390/cancers14133059.

    Article 

    Google Scholar
     

  • Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–8. https://doi.org/10.1074/jbc.274.17.11455.

    Article 

    Google Scholar
     

  • McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids. 2012;42:199–205. https://doi.org/10.1007/s00726-011-0864-8.

    Article 

    Google Scholar
     

  • Chen L, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-gamma-lyase function. Oncol Rep. 2015;33:1465–74. https://doi.org/10.3892/or.2015.3712.

    Article 

    Google Scholar
     

  • Bridges RJ, Natale NR, Patel SA. System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165:20–34. https://doi.org/10.1111/j.1476-5381.2011.01480.x.

    Article 

    Google Scholar
     

  • Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 2018. https://doi.org/10.1186/s40880-018-0288-x.

    Article 

    Google Scholar
     

  • Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17. https://doi.org/10.1038/nchembio.1416.

    Article 

    Google Scholar
     

  • Pizzino G, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763.

    Article 

    Google Scholar
     

  • Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60. https://doi.org/10.1016/j.canlet.2011.12.012.

    Article 

    Google Scholar
     

  • Li FJ, et al. System X(c) (-)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022;13: 910292. https://doi.org/10.3389/fphar.2022.910292.

    Article 

    Google Scholar
     

  • Lu Z, et al. The potential of ferroptosis combined with radiotherapy in cancer treatment. Front Oncol. 2023;13:1085581. https://doi.org/10.3389/fonc.2023.1085581.

    Article 

    Google Scholar
     

  • Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360:201–5. https://doi.org/10.1124/jpet.116.237503.

    Article 

    Google Scholar
     

  • Liu X, et al. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid Med Cell Longev. 2022;2022:3192607. https://doi.org/10.1155/2022/3192607.

    Article 

    Google Scholar
     

  • Bayo Jimenez MT, et al. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med. 2022;187:72–91. https://doi.org/10.1016/j.freeradbiomed.2022.05.016.

    Article 

    Google Scholar
     

  • Song X, Long D. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci. 2020;14:267. https://doi.org/10.3389/fnins.2020.00267.

    Article 

    Google Scholar
     

  • Zhang Q, et al. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front Cell Dev Biol. 2022;10: 806081. https://doi.org/10.3389/fcell.2022.806081.

    Article 

    Google Scholar
     

  • Ngo V, Duennwald ML. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants. 2022. https://doi.org/10.3390/antiox11122345.

    Article 

    Google Scholar
     

  • Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol. 2020. https://doi.org/10.1128/MCB.00099-20.

    Article 

    Google Scholar
     

  • Kaspar JW, Niture SK, Jaiswal AK. Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9. https://doi.org/10.1016/j.freeradbiomed.2009.07.035.

    Article 

    Google Scholar
     

  • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

    Article 

    Google Scholar
     

  • Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17:22–8. https://doi.org/10.4103/jcrt.JCRT_862_16.

    Article 

    Google Scholar
     

  • Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 2018;29:1756–73. https://doi.org/10.1089/ars.2017.7176.

    Article 

    Google Scholar
     

  • Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–8. https://doi.org/10.1038/nchembio.2239.

    Article 

    Google Scholar
     

  • Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478:1338–43. https://doi.org/10.1016/j.bbrc.2016.08.124.

    Article 

    Google Scholar
     

  • Kuwata H, et al. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 2019. https://doi.org/10.1016/j.bbalip.2019.07.013.

    Article 

    Google Scholar
     

  • Cheng J, et al. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep. 2020;43:147–58. https://doi.org/10.3892/or.2019.7419.

    Article 

    Google Scholar
     

  • Jia B, Li J, Song Y, Luo C. ACSL4-mediated ferroptosis and its potential role in central nervous system diseases and injuries. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241210021.

    Article 

    Google Scholar
     

  • Xie R, Li J, Zhao H. The underlying mechanisms involved in the protective effects of ischemic postconditioning. Cond Med. 2018;1:73–9.


    Google Scholar
     

  • Li Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–99. https://doi.org/10.1038/s41418-019-0299-4.

    Article 

    Google Scholar
     

  • Suarez-Rivero JM, et al. Coenzyme Q(10) analogues: benefits and challenges for therapeutics. Antioxidants. 2021. https://doi.org/10.3390/antiox10020236.

    Article 

    Google Scholar
     

  • Cirilli I, et al. Role of coenzyme Q(10) in health and disease: an update on the last 10 years (2010–2020). Antioxidants. 2021. https://doi.org/10.3390/antiox10081325.

    Article 

    Google Scholar
     

  • Stockwell BR, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article 

    Google Scholar
     

  • Han C, et al. Ferroptosis and its potential role in human diseases. Front Pharmacol. 2020;11:239. https://doi.org/10.3389/fphar.2020.00239.

    Article 

    Google Scholar
     

  • Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 2022;8:501. https://doi.org/10.1038/s41420-022-01297-7.

    Article 

    Google Scholar
     

  • Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32:920–37. https://doi.org/10.1016/j.cmet.2020.10.011.

    Article 

    Google Scholar
     

  • Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer. Annu Rev Pathol. 2016;11:617–44. https://doi.org/10.1146/annurev-pathol-012414-040349.

    Article 

    Google Scholar
     

  • Huang TT, Zou Y, Corniola R. Oxidative stress and adult neurogenesis–effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol. 2012;23:738–44. https://doi.org/10.1016/j.semcdb.2012.04.003.

    Article 

    Google Scholar
     

  • Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol. 2019;11:524–30. https://doi.org/10.1093/jmcb/mjz026.

    Article 

    Google Scholar
     

  • Karuppagounder SS, et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. 2018;84:854–72. https://doi.org/10.1002/ana.25356.

    Article 

    Google Scholar
     

  • Simabuco FM, et al. p53 and metabolism: from mechanism to therapeutics. Oncotarget. 2018;9:23780–823. https://doi.org/10.18632/oncotarget.25267.

    Article 

    Google Scholar
     

  • Levine AJ, Puzio-Kuter AM, Chan CS, Hainaut P. The role of the p53 protein in stem-cell biology and epigenetic regulation. Cold Spring Harb Perspect Med. 2016. https://doi.org/10.1101/cshperspect.a026153.

    Article 

    Google Scholar
     

  • Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620. https://doi.org/10.1007/s13238-020-00789-5.

    Article 

    Google Scholar
     

  • Zhang Z, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103. https://doi.org/10.1080/15548627.2018.1503146.

    Article 

    Google Scholar
     

  • Tang X, et al. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett. 2022;23:47. https://doi.org/10.3892/ol.2021.13165.

    Article 

    Google Scholar
     

  • Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ. 2016;23:1099–109. https://doi.org/10.1038/cdd.2016.25.

    Article 

    Google Scholar
     

  • Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayir H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med. 2018;124:493–503. https://doi.org/10.1016/j.freeradbiomed.2018.06.031.

    Article 

    Google Scholar
     

  • Venkatesh D, et al. MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev. 2020;34:526–43. https://doi.org/10.1101/gad.334219.119.

    Article 

    Google Scholar
     

  • Jiang L, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. https://doi.org/10.1038/nature14344.

    Article 

    Google Scholar
     

  • Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A. 2016;113:E6806–12. https://doi.org/10.1073/pnas.1607152113.

    Article 

    Google Scholar
     

  • Venkatesh D, Stockwell BR, Prives C. p21 can be a barrier to ferroptosis independent of p53. Aging (Albany NY). 2020;12:17800–14. https://doi.org/10.18632/aging.103961.

    Article 

    Google Scholar
     

  • Wang QQ, et al. Ionizing radiation-induced brain cell aging and the potential underlying molecular mechanisms. Cells. 2021. https://doi.org/10.3390/cells10123570.

    Article 

    Google Scholar
     

  • Ding C, Saw CB, Timmerman RD. Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Med Dosim. 2018;43:129–40. https://doi.org/10.1016/j.meddos.2018.02.006.

    Article 

    Google Scholar
     

  • Wang Y, et al. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema. J Neurooncol. 2014;119:369–76. https://doi.org/10.1007/s11060-014-1488-0.

    Article 

    Google Scholar
     

  • Balentova S, Adamkov M. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci. 2015;16:27796–815. https://doi.org/10.3390/ijms161126068.

    Article 

    Google Scholar
     

  • Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res. 2017;120:449–71. https://doi.org/10.1161/CIRCRESAHA.116.308427.

    Article 

    Google Scholar
     

  • Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22:1321–35. https://doi.org/10.1007/s10495-017-1424-9.

    Article 

    Google Scholar
     

  • Dayal R, Singh A, Pandey A, Mishra KP. Reactive oxygen species as mediator of tumor radiosensitivity. J Cancer Res Ther. 2014;10:811–8. https://doi.org/10.4103/0973-1482.146073.

    Article 

    Google Scholar
     

  • Makranz C, et al. Short report: plasma based biomarkers detect radiation induced brain injury in cancer patients treated for brain metastasis: a pilot study. PLoS ONE. 2023;18: e0285646. https://doi.org/10.1371/journal.pone.0285646.

    Article 

    Google Scholar
     

  • Qin D, et al. Traumatic brain injury: ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. Cells. 2021. https://doi.org/10.3390/cells10051009.

    Article 

    Google Scholar
     

  • Zhang S, et al. The regulatory effects and the signaling pathways of natural bioactive compounds on ferroptosis. 2021. Foods. https://doi.org/10.3390/foods10122952.

  • Lee J, Roh JL. Unleashing ferroptosis in human cancers: targeting ferroptosis suppressor protein 1 for overcoming therapy resistance. Antioxidants. 2023. https://doi.org/10.3390/antiox12061218.

    Article 

    Google Scholar
     

  • Su J, et al. Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol. 2022;10: 951116. https://doi.org/10.3389/fcell.2022.951116.

    Article 

    Google Scholar
     

  • Pacelli R, et al. Technological evolution of radiation treatment: implications for clinical applications. Semin Oncol. 2019;46:193–201. https://doi.org/10.1053/j.seminoncol.2019.07.004.

    Article 

    Google Scholar
     

  • Garibaldi C, et al. Recent advances in radiation oncology. Ecancermedicalscience. 2017;11:785. https://doi.org/10.3332/ecancer.2017.785.

    Article 

    Google Scholar
     

  • Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol. 2016;13:92–105. https://doi.org/10.1038/nrclinonc.2015.152.

    Article 

    Google Scholar
     

  • Kessler AT, Bhatt AA. Brain tumour post-treatment imaging and treatment-related complications. Insights Imaging. 2018;9:1057–75. https://doi.org/10.1007/s13244-018-0661-y.

    Article 

    Google Scholar
     

  • Jablonska PA, et al. Challenges and novel opportunities of radiation therapy for brain metastases in non-small cell lung cancer. Cancers. 2021. https://doi.org/10.3390/cancers13092141.

    Article 

    Google Scholar
     

  • Soffietti R, Pellerino A, Bruno F, Mauro A, Ruda R. Neurotoxicity from old and new radiation treatments for brain tumors. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241310669.

    Article 

    Google Scholar
     

  • Frigault M, et al. Dose fractionation of CAR-T cells A. systematic review of clinical outcomes. J Exp Clin Cancer Res. 2023. https://doi.org/10.1186/s13046-022-02540-w.

    Article 

    Google Scholar
     

  • Smart D. Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol. 2017;27:332–9. https://doi.org/10.1016/j.semradonc.2017.04.006.

    Article 

    Google Scholar
     

  • Baumann M, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49. https://doi.org/10.1038/nrc.2016.18.

    Article 

    Google Scholar
     

  • Fiorino C, Guckemberger M, Schwarz M, van der Heide UA, Heijmen B. Technology-driven research for radiotherapy innovation. Mol Oncol. 2020;14:1500–13. https://doi.org/10.1002/1878-0261.12659.

    Article 

    Google Scholar
     

  • Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120:779–90. https://doi.org/10.1038/s41416-019-0412-y.

    Article 

    Google Scholar
     

  • Ludmir EB, Grosshans DR, Woodhouse KD. Radiotherapy advances in pediatric neuro-oncology. Bioengineering. 2018. https://doi.org/10.3390/bioengineering5040097.

    Article 

    Google Scholar
     

  • Scaringi C, Agolli L, Minniti G. Technical advances in radiation therapy for brain tumors. Anticancer Res. 2018;38:6041–5. https://doi.org/10.21873/anticanres.12954.

    Article 

    Google Scholar
     

  • Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release. 2016;240:443–53. https://doi.org/10.1016/j.jconrel.2016.03.031.

    Article 

    Google Scholar
     

  • Minniti G, et al. Current status and recent advances in resection cavity irradiation of brain metastases. Radiat Oncol. 2021;16:73. https://doi.org/10.1186/s13014-021-01802-9.

    Article 

    Google Scholar
     

  • Grunert M, et al. Radiation and brain tumors: an overview. Crit Rev Oncog. 2018;23:119–38. https://doi.org/10.1615/CritRevOncog.2018025927.

    Article 

    Google Scholar
     

  • Kondziolka D, Shin SM, Brunswick A, Kim I, Silverman JS. The biology of radiosurgery and its clinical applications for brain tumors. Neuro Oncol. 2015;17:29–44. https://doi.org/10.1093/neuonc/nou284.

    Article 

    Google Scholar
     

  • Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front Oncol. 2014;4:1. https://doi.org/10.3389/fonc.2014.00001.

    Article 

    Google Scholar
     

  • Moulder JE, Seymour C. Radiation fractionation: the search for isoeffect relationships and mechanisms. Int J Radiat Biol. 2018;94:743–51. https://doi.org/10.1080/09553002.2017.1376764.

    Article 

    Google Scholar
     

  • Griffin RJ, et al. Understanding high-dose, ultra-high dose rate, and spatially fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 2020;107:766–78. https://doi.org/10.1016/j.ijrobp.2020.03.028.

    Article 

    Google Scholar
     

  • Demaria S, et al. Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose? J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-002038.

    Article 

    Google Scholar
     

  • Sammer M, et al. Normal tissue response of combined temporal and spatial fractionation in proton minibeam radiation therapy. Int J Radiat Oncol Biol Phys. 2021;109:76–83. https://doi.org/10.1016/j.ijrobp.2020.08.027.

    Article 

    Google Scholar
     

  • Rivers C, et al. Impact of the number of metastatic tumors treated by stereotactic radiosurgery on the dose to normal brain: implications for brain protection. Stereotact Funct Neurosurg. 2017;95:352–8. https://doi.org/10.1159/000480666.

    Article 

    Google Scholar
     

  • Yang J, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 2021;9: 789948. https://doi.org/10.3389/fcell.2021.789948.

    Article 

    Google Scholar
     

  • Latunde-Dada GO. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017. https://doi.org/10.1016/j.bbagen.2017.05.019.

    Article 

    Google Scholar
     

  • Costa I, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023;244: 108373. https://doi.org/10.1016/j.pharmthera.2023.108373.

    Article 

    Google Scholar
     

  • Yadav VK, et al. Deeper insight into ferroptosis: association with Alzheimer’s, Parkinson’s disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep. 2023;28:2269331. https://doi.org/10.1080/13510002.2023.2269331.

    Article 

    Google Scholar
     

  • Yu Y, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7:193. https://doi.org/10.1038/s41420-021-00579-w.

    Article 

    Google Scholar
     

  • Vitalakumar D, Sharma A, Flora SJS. Ferroptosis: a potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol. 2021;35: e22830. https://doi.org/10.1002/jbt.22830.

    Article 

    Google Scholar
     

  • Wang HH, Fan SQ, Zhan YT, Peng SP, Wang WY. Suppression of the SLC7A11/glutathione axis causes ferroptosis and apoptosis and alters the mitogen-activated protein kinase pathway in nasopharyngeal carcinoma. Int J Biol Macromol. 2024;254: 127976. https://doi.org/10.1016/j.ijbiomac.2023.127976.

    Article 

    Google Scholar
     

  • Wang F, He J, Xing R, Sha T, Sun B. Molecular mechanisms of ferroptosis and their role in inflammation. Int Rev Immunol. 2023;42:71–81. https://doi.org/10.1080/08830185.2021.2016739.

    Article 

    Google Scholar
     

  • Rochette L, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms24010449.

    Article 

    Google Scholar
     

  • Ratan RR. The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol. 2020;27:479–98. https://doi.org/10.1016/j.chembiol.2020.03.007.

    Article 

    Google Scholar
     

  • Shen L, et al. Ferroptosis in acute central nervous system injuries: the future direction? Front Cell Dev Biol. 2020;8:594. https://doi.org/10.3389/fcell.2020.00594.

    Article 

    Google Scholar
     

  • Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8: 586578. https://doi.org/10.3389/fcell.2020.586578.

    Article 

    Google Scholar
     

  • Liu M, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann Transl Med. 2022;10:368. https://doi.org/10.21037/atm-21-6942.

    Article 

    Google Scholar
     

  • Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21. https://doi.org/10.1016/j.cell.2022.06.003.

    Article 

    Google Scholar
     

  • Shi W, et al. Reprimo (RPRM) mediates neuronal ferroptosis via CREB-Nrf2/SCD1 pathways in radiation-induced brain injury. Free Radic Biol Med. 2024;213:343–58. https://doi.org/10.1016/j.freeradbiomed.2024.01.021.

    Article 

    Google Scholar
     

  • Ye LF, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15:469–84. https://doi.org/10.1021/acschembio.9b00939.

    Article 

    Google Scholar
     

  • Li J, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88. https://doi.org/10.1038/s41419-020-2298-2.

    Article 

    Google Scholar
     

  • Chen L, et al. Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med. 2022;180:1–12. https://doi.org/10.1016/j.freeradbiomed.2022.01.002.

    Article 

    Google Scholar
     

  • Wang X, Wang Z, Cao J, Dong Y, Chen Y. Ferroptosis mechanisms involved in hippocampal-related diseases. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22189902.

    Article 

    Google Scholar
     

  • Tang S, et al. The role of iron, its metabolism and ferroptosis in traumatic brain injury. Front Cell Neurosci. 2020;14: 590789. https://doi.org/10.3389/fncel.2020.590789.

    Article 

    Google Scholar
     

  • Gao M, et al. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32. https://doi.org/10.1038/cr.2016.95.

    Article 

    Google Scholar
     

  • Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90:1–37. https://doi.org/10.1007/s00204-015-1579-5.

    Article 

    Google Scholar
     

  • Wang Y, et al. The iron chaperone poly C binding protein 1 regulates iron efflux through intestinal ferroportin in mice. Blood. 2023. https://doi.org/10.1182/blood.2023020504.

    Article 

    Google Scholar
     

  • Gaschler MM, et al. FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018;14:507–15. https://doi.org/10.1038/s41589-018-0031-6.

    Article 

    Google Scholar
     

  • Meng P, et al. Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis. Ecotoxicol Environ Saf. 2020;194: 110360. https://doi.org/10.1016/j.ecoenv.2020.110360.

    Article 

    Google Scholar
     

  • Mao H, Zhao Y, Li H, Lei L. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol. 2020;155:20–8. https://doi.org/10.1016/j.pbiomolbio.2020.04.001.

    Article 

    Google Scholar
     

  • Hall ED, Bosken JM. Measurement of oxygen radicals and lipid peroxidation in neural tissues. Curr Protoc Neurosci. 2009. https://doi.org/10.1002/0471142301.ns0717s48.

    Article 

    Google Scholar
     

  • Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82–83:969–74. https://doi.org/10.1016/0378-4274(95)03532-x.

    Article 

    Google Scholar
     

  • Xu YY, Wan WP, Zhao S, Ma ZG. L-type calcium channels are involved in iron-induced neurotoxicity in primary cultured ventral mesencephalon neurons of rats. Neurosci Bull. 2020;36:165–73. https://doi.org/10.1007/s12264-019-00424-2.

    Article 

    Google Scholar
     

  • Yu H, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 2019;42:826–38. https://doi.org/10.3892/or.2019.7189.

    Article 

    Google Scholar
     

  • Xie J, et al. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Appl Mater Interfaces. 2019;11:2579–90. https://doi.org/10.1021/acsami.8b00949.

    Article 

    Google Scholar
     

  • Rodencal J, Dixon SJ. A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity. Proteomics. 2023;23: e2100308. https://doi.org/10.1002/pmic.202100308.

    Article 

    Google Scholar
     

  • Pan Q, Luo Y, Xia Q, He K. Ferroptosis and liver fibrosis. Int J Med Sci. 2021;18:3361–6. https://doi.org/10.7150/ijms.62903.

    Article 

    Google Scholar
     

  • Yang WS. Ferroptosis: whERe is the critical site of lipid peroxidation? Front Cell Dev Biol. 2023;11:1179245. https://doi.org/10.3389/fcell.2023.1179245.

    Article 

    Google Scholar
     

  • He L, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44:532–53. https://doi.org/10.1159/000485089.

    Article 

    Google Scholar
     

  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. https://doi.org/10.1152/physrev.00018.2001.

    Article 

    Google Scholar
     

  • Lei L, Zhang J, Decker EA, Zhang G. Roles of lipid peroxidation-derived electrophiles in pathogenesis of colonic inflammation and colon cancer. Front Cell Dev Biol. 2021;9: 665591. https://doi.org/10.3389/fcell.2021.665591.

    Article 

    Google Scholar
     

  • Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021;2021:9999612. https://doi.org/10.1155/2021/9999612.

    Article 

    Google Scholar
     

  • Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16: e2006203. https://doi.org/10.1371/journal.pbio.2006203.

    Article 

    Google Scholar
     

  • Zhang X, et al. Ferroptosis, a new form of cell death defined after radiation exposure. Int J Radiat Biol. 2022;98:1201–9. https://doi.org/10.1080/09553002.2022.2020358.

    Article 

    Google Scholar
     

  • Mizugaki A, et al. Cystine reduces mitochondrial dysfunction in C2C12 myotubes under moderate oxidative stress induced by H(2)O(2). Amino Acids. 2022;54:1203–13. https://doi.org/10.1007/s00726-022-03176-y.

    Article 

    Google Scholar
     

  • Chen M, et al. Prospects for anti-tumor mechanism and potential clinical application based on glutathione peroxidase 4 mediated ferroptosis. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021607.

    Article 

    Google Scholar
     

  • Wu L, et al. Effects of curcumin on oxidative stress and ferroptosis in acute ammonia stress-induced liver injury in gibel carp (carassius gibelio). Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24076441.

    Article 

    Google Scholar
     

  • Dixon SJ, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3: e02523. https://doi.org/10.7554/eLife.02523.

    Article 

    Google Scholar
     

  • Magtanong L, Dixon SJ. Ferroptosis and Brain Injury. Dev Neurosci. 2018;40:382–95. https://doi.org/10.1159/000496922.

    Article 

    Google Scholar
     

  • Adeniyi PA, et al. Ferroptosis of microglia in aging human white matter injury. Ann Neurol. 2023. https://doi.org/10.1002/ana.26770.

    Article 

    Google Scholar
     

  • Tarangelo A, Dixon S. The p53–p21 pathway inhibits ferroptosis during metabolic stress. Oncotarget. 2018;9:24572–3. https://doi.org/10.18632/oncotarget.25362.

    Article 

    Google Scholar
     

  • Ji Q, et al. ACSL4 is essential for radiation-induced intestinal injury by initiating ferroptosis. Cell Death Discov. 2022;8:332. https://doi.org/10.1038/s41420-022-01127-w.

    Article 

    Google Scholar
     

  • Pruzincova L, et al. MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol. 2009;19:2716–27. https://doi.org/10.1007/s00330-009-1449-8.

    Article 

    Google Scholar
     

  • Ivanov SD, Semenov AL, Kovan’ko EG, Yamshanov VA. Effects of iron ions and iron chelation on the efficiency of experimental radiotherapy of animals with gliomas. Bull Exp Biol Med. 2015;158:800–3. https://doi.org/10.1007/s10517-015-2865-1.

    Article 

    Google Scholar
     

  • Sandoval-Acuna C, et al. Targeting mitochondrial iron metabolism suppresses tumor growth and metastasis by inducing mitochondrial dysfunction and mitophagy. Cancer Res. 2021;81:2289–303. https://doi.org/10.1158/0008-5472.CAN-20-1628.

    Article 

    Google Scholar
     

  • Alborzinia H, et al. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol. 2018;1:210. https://doi.org/10.1038/s42003-018-0212-6.

    Article 

    Google Scholar
     

  • Gao X, et al. Ibuprofen induces ferroptosis of glioblastoma cells via downregulation of nuclear factor erythroid 2-related factor 2 signaling pathway. Anticancer Drugs. 2020;31:27–34. https://doi.org/10.1097/CAD.0000000000000825.

    Article 

    Google Scholar
     

  • Yokoi I, Toma J, Liu J, Kabuto H, Mori A. Adenosines scavenged hydroxyl radicals and prevented posttraumatic epilepsy. Free Radic Biol Med. 1995;19:473–9. https://doi.org/10.1016/0891-5849(95)00050-8.

    Article 

    Google Scholar
     

  • Mori A, Yokoi I, Noda Y, Willmore LJ. Natural antioxidants may prevent posttraumatic epilepsy: a proposal based on experimental animal studies. Acta Med Okayama. 2004;58:111–8. https://doi.org/10.18926/AMO/32111.

    Article 

    Google Scholar
     

  • Ponka P. Rare causes of hereditary iron overload. Semin Hematol. 2002;39:249–62. https://doi.org/10.1053/shem.2002.35638.

    Article 

    Google Scholar
     

  • David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signal. 2022;37:150–70. https://doi.org/10.1089/ars.2021.0218.

    Article 

    Google Scholar
     

  • Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31. https://doi.org/10.1016/S1474-4422(12)70104-7.

    Article 

    Google Scholar
     

  • Liu H, et al. Bakuchiol attenuates oxidative stress and neuron damage by regulating Trx1/TXNIP and the phosphorylation of AMPK after subarachnoid hemorrhage in mice. Front Pharmacol. 2020;11:712. https://doi.org/10.3389/fphar.2020.00712.

    Article 

    Google Scholar
     

  • Duan X, Wen Z, Shen H, Shen M, Chen G. Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid Med Cell Longev. 2016;2016:1203285. https://doi.org/10.1155/2016/1203285.

    Article 

    Google Scholar
     

  • Qu J, Chen W, Hu R, Feng H. The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxid Med Cell Longev. 2016;2016:2592935. https://doi.org/10.1155/2016/2592935.

    Article 

    Google Scholar
     

  • Zille M, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48:1033–43. https://doi.org/10.1161/STROKEAHA.116.015609.

    Article 

    Google Scholar
     

  • Li Q, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2017;2: e90777. https://doi.org/10.1172/jci.insight.90777.

    Article 

    Google Scholar
     

  • Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci. 2022;16:1025708. https://doi.org/10.3389/fncel.2022.1025708.

    Article 

    Google Scholar
     

  • Chen S, et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage. Antioxid Redox Signal. 2022;37:115–34. https://doi.org/10.1089/ars.2021.0072.

    Article 

    Google Scholar
     

  • Hong Y, et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation. 2020;17:150. https://doi.org/10.1186/s12974-020-01747-y.

    Article 

    Google Scholar
     

  • Cui C, Yang F, Li Q. Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 2022;9: 901565. https://doi.org/10.3389/fmolb.2022.901565.

    Article 

    Google Scholar
     

  • Yang WS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31. https://doi.org/10.1016/j.cell.2013.12.010.

    Article 

    Google Scholar
     

  • Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17. https://doi.org/10.1016/j.redox.2017.01.021.

    Article 

    Google Scholar
     

  • Abdulla S, Saada J, Johnson G, Jefferies S, Ajithkumar T. Tumour progression or pseudoprogression? a review of post-treatment radiological appearances of glioblastoma. Clin Radiol. 2015;70:1299–312. https://doi.org/10.1016/j.crad.2015.06.096.

    Article 

    Google Scholar
     

  • Greene-Schloesser D, et al. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73. https://doi.org/10.3389/fonc.2012.00073.

    Article 

    Google Scholar
     

  • Ruan Y, Jiang S, Musayeva A, Gericke A. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants. 2020. https://doi.org/10.3390/antiox9080761.

    Article 

    Google Scholar
     

  • Ali FS, et al. Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep. 2019;21:66. https://doi.org/10.1007/s11912-019-0818-y.

    Article 

    Google Scholar
     

  • McCullough LD. Neurovascular disease: 2022 update. Free Neuropathol. 2022. https://doi.org/10.17879/freeneuropathology-2022-3910.

    Article 

    Google Scholar
     

  • Rakhshandeh A, de Lange CFM, Htoo JK, Gheisari A, Rakhshandeh AR. Immune system stimulation increases the plasma cysteine flux and whole-body glutathione synthesis rate in starter pigs1. J Anim Sci. 2019;97:3871–81. https://doi.org/10.1093/jas/skz211.

    Article 

    Google Scholar
     

  • Li X, et al. Abnormal neuronal damage and inflammation in the hippocampus of kainic acid-induced epilepsy mice. Cell Biochem Funct. 2021;39:791–801. https://doi.org/10.1002/cbf.3651.

    Article 

    Google Scholar
     

  • Piao J, et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 2015;16:198–210. https://doi.org/10.1016/j.stem.2015.01.004.

    Article 

    Google Scholar
     

  • Hassanein SM, Ibrahim YA. Posttraumatic acute disseminated encephalomyelitis in a child resolved by steroid therapy: case report. J Clin Neurol. 2016;12:245–7. https://doi.org/10.3988/jcn.2016.12.2.245.

    Article 

    Google Scholar
     

  • Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia. 2021;69:1619–36. https://doi.org/10.1002/glia.23945.

    Article 

    Google Scholar
     

  • Liu Y, et al. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation. 2014;11:135. https://doi.org/10.1186/1742-2094-11-135.

    Article 

    Google Scholar
     

  • Akeret K, et al. Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. J Cereb Blood Flow Metab. 2021;41:3000–15. https://doi.org/10.1177/0271678X211020629.

    Article 

    Google Scholar
     

  • Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23:629–52. https://doi.org/10.1097/01.WCB.0000073905.87928.6D.

    Article 

    Google Scholar
     

  • Wu J, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34:2964–9. https://doi.org/10.1161/01.STR.0000103140.52838.45.

    Article 

    Google Scholar
     

  • Wan S, Zhan R, Zheng S, Hua Y, Xi G. Activation of c-Jun-N-terminal kinase in a rat model of intracerebral hemorrhage: the role of iron. Neurosci Res. 2009;63:100–5. https://doi.org/10.1016/j.neures.2008.10.013.

    Article 

    Google Scholar
     

  • Perez de la Ossa N, et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke. 2010;41:810–3. https://doi.org/10.1161/STROKEAHA.109.570168.

    Article 

    Google Scholar
     

  • Neubert J, Wagner S, Kiwit J, Brauer AU, Glumm J. New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. Int J Nanomedicine. 2015;10:2033–49. https://doi.org/10.2147/IJN.S74404.

    Article 

    Google Scholar
     

  • Donley DW, Realing M, Gigley JP, Fox JH. Iron activates microglia and directly stimulates indoleamine-2,3-dioxygenase activity in the N171–82Q mouse model of Huntington’s disease. PLoS ONE. 2021;16: e0250606. https://doi.org/10.1371/journal.pone.0250606.

    Article 

    Google Scholar
     

  • Saleppico S, et al. Iron regulates microglial cell-mediated secretory and effector functions. Cell Immunol. 1996;170:251–9. https://doi.org/10.1006/cimm.1996.0159.

    Article 

    Google Scholar
     

  • Chang YQ, et al. Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res. 2023;18:416–21. https://doi.org/10.4103/1673-5374.346549.

    Article 

    Google Scholar
     

  • Zhou D, et al. Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI. Neuroscience. 2019;408:14–21. https://doi.org/10.1016/j.neuroscience.2019.03.039.

    Article 

    Google Scholar
     

  • Li M, Hamilton R, Salapa HE, Levin MC. Pro-inflammatory cytokines and antibodies induce hnRNP A1 dysfunction in mouse primary cortical neurons. Brain Sci. 2021. https://doi.org/10.3390/brainsci11101282.

    Article 

    Google Scholar
     

  • Yang P, et al. Ionizing radiation upregulates glutamine metabolism and induces cell death via accumulation of reactive oxygen species. Oxid Med Cell Longev. 2021;2021:5826932. https://doi.org/10.1155/2021/5826932.

    Article 

    Google Scholar
     

  • Hayashi T, et al. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res. 2004;556:83–91. https://doi.org/10.1016/j.mrfmmm.2004.07.002.

    Article 

    Google Scholar
     

  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30:11–26. https://doi.org/10.1007/s12291-014-0446-0.

    Article 

    Google Scholar
     

  • Eid R, Arab NT, Greenwood MT. Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta Mol Cell Res. 1864;399–430:2017. https://doi.org/10.1016/j.bbamcr.2016.12.002.

    Article 

    Google Scholar
     

  • Abe C, Miyazawa T, Miyazawa T. Current use of fenton reaction in drugs and food. Molecules. 2022. https://doi.org/10.3390/molecules27175451.

    Article 

    Google Scholar
     

  • Long H, Zhu W, Wei L, Zhao J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm. 2023. https://doi.org/10.1002/mco2.298.

    Article 

    Google Scholar
     

  • Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89–96.

    Article 

    Google Scholar
     

  • Logan MP, Parker S, Shi R. Glutathione and ascorbic acid enhance recovery of Guinea pig spinal cord white matter following ischemia and acrolein exposure. Pathobiology. 2005;72:171–8. https://doi.org/10.1159/000086786.

    Article 

    Google Scholar
     

  • Vaziri ND, Lee YS, Lin CY, Lin VW, Sindhu RK. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res. 2004;995:76–83. https://doi.org/10.1016/j.brainres.2003.09.056.

    Article 

    Google Scholar
     

  • Davis CK, Vemuganti R. Antioxidant therapies in traumatic brain injury. Neurochem Int. 2022;152: 105255. https://doi.org/10.1016/j.neuint.2021.105255.

    Article 

    Google Scholar
     

  • Fesharaki-Zadeh A. Oxidative stress in traumatic brain injury. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232113000.

    Article 

    Google Scholar
     

  • Kale A, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res. 2018;59:404–10. https://doi.org/10.1093/jrr/rry032.

    Article 

    Google Scholar
     

  • Zhang Y, et al. Neuroprotective effects of kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem Res. 2016;41:2549–58. https://doi.org/10.1007/s11064-016-1967-0.

    Article 

    Google Scholar
     

  • Abrams RP, Carroll WL, Woerpel KA. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol. 2016;11:1305–12. https://doi.org/10.1021/acschembio.5b00900.

    Article 

    Google Scholar
     

  • Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96. https://doi.org/10.1038/s41568-022-00459-0.

    Article 

    Google Scholar
     

  • Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25. https://doi.org/10.1038/s41422-020-00441-1.

    Article 

    Google Scholar
     

  • Ji Y, et al. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci. 2022;16:1005182. https://doi.org/10.3389/fncel.2022.1005182.

    Article 

    Google Scholar
     

  • Guo S, et al. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther. 2023;8:205. https://doi.org/10.1038/s41392-023-01462-z.

    Article 

    Google Scholar
     

  • Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021;12:836–57. https://doi.org/10.1007/s13238-021-00841-y.

    Article 

    Google Scholar
     

  • Porras CA, Rouault TA. Iron homeostasis in the CNS: an overview of the pathological consequences of iron metabolism disruption. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23094490.

    Article 

    Google Scholar
     

  • Beretta GL, Zaffaroni N. Radiotherapy-induced ferroptosis for cancer treatment. Front Mol Biosci. 2023;10:1216733. https://doi.org/10.3389/fmolb.2023.1216733.

    Article 

    Google Scholar
     

  • Zhang X, et al. Hematopoietic protection and mechanisms of ferrostatin-1 on hematopoietic acute radiation syndrome of mice. Int J Radiat Biol. 2021;97:464–73. https://doi.org/10.1080/09553002.2021.1876956.

    Article 

    Google Scholar
     



  • Source link