Scientific Papers

Turkish coffee has an antitumor effect on breast cancer cells in vitro and in vivo | Nutrition & Metabolism


  • Safe S, Kothari J, Hailemariam A et al. Health benefits of Coffee Consumption for Cancer and other diseases and mechanisms of Action. Int J Mol Sci. 2023; 24(3).

  • Socha M, Sobiech KA, Eating, Habits. Risk of Breast Cancer, and Diet-Dependent Quality of Life in Postmenopausal Women after Mastectomy. J Clin Med. 2022; 11(15).

  • Guerriero G, Berni R, Munoz-Sanchez JA et al. Production of Plant secondary metabolites: examples, Tips and suggestions for Biotechnologists. Genes (Basel). 2018; 9(6).

  • Lester SC, Bose S, Chen YY, et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 2009;133(10):1515–38.

    Article 
    PubMed 

    Google Scholar
     

  • Bhattacharya T, Dutta S, Akter R et al. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules. 2021; 11(8).

  • Kapinova A, Kubatka P, Golubnitschaja O, et al. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med. 2018;23(1):36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneses AF, Mendes A, Rocha DC, et al. Association of coffee intake and its polyphenols with mammographic findings in women who visited the Brazilian Public Health Service. Nutr Hosp. 2023;40(2):377–83.

    PubMed 

    Google Scholar
     

  • Sanchez-Quesada C, Romanos-Nanclares A, Navarro AM, et al. Coffee consumption and breast cancer risk in the SUN project. Eur J Nutr. 2020;59(8):3461–71.

    Article 
    PubMed 

    Google Scholar
     

  • Azzeh FS, Hasanain DM, Qadhi AH et al. Consumption of Food Components of the Mediterranean Diet decreases the risk of breast Cancer in the Makkah Region, Saudi Arabia: a case-control study. Front Nutr. 2022; 9863029.

  • Farvid MS, Spence ND, Rosner BA, et al. Post-diagnostic coffee and tea consumption and breast cancer survival. Br J Cancer. 2021;124(11):1873–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Ma L. The association between coffee intake and breast cancer risk: a meta-analysis and dose-response analysis using recent evidence. Ann Palliat Med. 2021;10(4):3804–16.

    Article 
    PubMed 

    Google Scholar
     

  • Yaghjyan L, McLaughlin E, Lehman A, et al. Associations of coffee/caffeine consumption with postmenopausal breast cancer risk and their interactions with postmenopausal hormone use. Eur J Nutr. 2022;61(7):3449–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinnadurai S, Okabayashi S, Kawamura T, et al. Intake of common alcoholic and non-alcoholic beverages and breast Cancer risk among Japanese women: findings from the Japan Collaborative Cohort Study. Asian Pac J Cancer Prev. 2020;21(6):1701–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigra AD, de Almeida Bauer Guimaraes D, Prucca CG et al. Antitumor effects of Freeze-dried Robusta Coffee (Coffea canephora) extracts on breast Cancer cell lines. Oxid Med Cell Longev. 2021; 20215572630.

  • Tawfike A, Attia EZ, Desoukey SY, et al. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express. 2019;9(1):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olano C, Mendez C, Salas JA. Antitumor compounds from marine actinomycetes. Mar Drugs. 2009;7(2):210–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Wu W, Yang F, et al. Marine sponge-derived smenospongine preferentially eliminates breast cancer stem-like cells via p38/AMPKalpha pathways. Cancer Med. 2018;7(8):3965–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmallah MIY, Cogo S, Constantinescu AA et al. Marine actinomycetes-Derived secondary metabolites overcome TRAIL-Resistance via the intrinsic pathway through downregulation of Survivin and XIAP. Cells. 2020; 9(8).

  • Kolak A, Kaminska M, Sygit K, et al. Primary and secondary prevention of breast cancer. Ann Agric Environ Med. 2017;24(4):549–53.

    Article 
    PubMed 

    Google Scholar
     

  • Lesniczak B, Krasomski G, Oszukowski P, et al. Incidence of and mortality from breast cancer among women in Poland in the years 2001–2010. Prz Menopauzalny. 2014;13(6):344–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coughlin SS, Smith SA. The impact of the natural, social, built, and Policy environments on breast Cancer. J Environ Health Sci. 2015; 1(3).

  • Bourdon JC, Deguin-Chambon V, Lelong JC, et al. Further characterisation of the p53 responsive element–identification of new candidate genes for trans-activation by p53. Oncogene. 1997;14(1):85–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckbinder L, Talbott R, Velasco-Miguel S, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995;377(6550):646–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 receptor system as an Anti-tumor and Anti-metastatic Signaling in Cancer. Cells. 2020; 9(5).

  • Waghray D, Zhang Q. Inhibit or evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem. 2018;61(12):5108–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brockman JA, Gupta RA, Dubois RN. Activation of PPARgamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology. 1998;115(5):1049–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Fu M, D’Amico M, et al. Inhibition of cellular proliferation through IkappaB kinase-independent and peroxisome proliferator-activated receptor gamma-dependent repression of cyclin D1. Mol Cell Biol. 2001;21(9):3057–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Mesery M, Al-Gayyar M, Salem H et al. Chemopreventive and renal protective effects for docosahexaenoic acid (DHA): implications of CRP and lipid peroxides. Cell Div. 2009; 46.

  • Schirner M, Hoffmann J, Menrad A, et al. Antiangiogenic chemotherapeutic agents: characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res. 1998;4(5):1331–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Xiao C, Jiang W et al. Capsaicin inhibits proliferation and induces apoptosis in breast Cancer by Down-regulating FBI-1-Mediated NF-kappaB pathway. Drug Des Devel Ther. 2021; 15125–40.

  • Parton M, Dowsett M, Smith I. Studies of apoptosis in breast cancer. BMJ. 2001;322(7301):1528–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin P, Liang Z, Wang M. Caffeine consumption and mortality in populations with different weight statuses: an analysis of NHANES 1999–2014. Nutrition. 2022; 102111731.

  • Liu D, Li ZH, Shen D, et al. Association of Sugar-Sweetened, artificially sweetened, and Unsweetened Coffee Consumption with all-cause and cause-specific mortality: a large prospective cohort study. Ann Intern Med. 2022;175(7):909–17.

    Article 
    PubMed 

    Google Scholar
     

  • Torres-Collado L, Compan-Gabucio LM, Gonzalez-Palacios S et al. Coffee Consumption and All-Cause, Cardiovascular, and Cancer Mortality in an adult Mediterranean Population. Nutrients. 2021; 13(4).

  • Carter P, Yuan S, Kar S, et al. Coffee consumption and cancer risk: a mendelian randomisation study. Clin Nutr. 2022;41(10):2113–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SY, Yoo DM, Min C et al. Association between Coffee Consumption/Physical Exercise and gastric, hepatic, Colon, breast, uterine cervix, lung, thyroid, prostate, and bladder Cancer. Nutrients 2021; 13(11).

  • Pu X, Storr SJ, Zhang Y, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22(3):357–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014;14(5):329–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clemmons DR. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol. 1998;140(1–2):19–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig RL, Bates S, Vousden KH. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 1996;16(9):4952–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang YS, Wang L, Liu D, et al. Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clin Cancer Res. 2002;8(12):3669–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Fu T, Pappou EP, Guzzetta AA, et al. IGFBP-3 gene methylation in primary Tumor predicts recurrence of stage II colorectal cancers. Ann Surg. 2016;263(2):337–44.

    Article 
    PubMed 

    Google Scholar
     

  • Pernia O, Belda-Iniesta C, Pulido V, et al. Methylation status of IGFBP-3 as a useful clinical tool for deciding on a concomitant radiotherapy. Epigenetics. 2014;9(11):1446–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh Y, Muller HL, Lamson G, et al. Insulin-like growth factor (IGF)-independent action of IGF-binding protein-3 in Hs578T human breast cancer cells. Cell surface binding and growth inhibition. J Biol Chem. 1993;268(20):14964–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh Y, Muller HL, Pham H, et al. Demonstration of receptors for insulin-like growth factor binding protein-3 on Hs578T human breast cancer cells. J Biol Chem. 1993;268(35):26045–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamanaka Y, Fowlkes JL, Wilson EM, et al. Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells: kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology. 1999;140(3):1319–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan W, Becker V, Klingmuller U, et al. The interface between self-assembling erythropoietin receptor transmembrane segments corresponds to a membrane-spanning leucine zipper. J Biol Chem. 2004;279(5):3273–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23(6):824–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schedlich LJ, Nilsen T, John AP, et al. Phosphorylation of insulin-like growth factor binding protein-3 by deoxyribonucleic acid-dependent protein kinase reduces ligand binding and enhances nuclear accumulation. Endocrinology. 2003;144(5):1984–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol. 2009;296(5):C954–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell PG, Durham SK, Hayes JD, et al. Insulin-like growth factor-binding protein-3 binds fibrinogen and fibrin. J Biol Chem. 1999;274(42):30215–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fowlkes JL, Serra DM. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem. 1996;271(25):14676–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol. 1986;4(2):244–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010; 59647–76.

  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006;580(4):998–1009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258(5088):1650–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honscha KU, Schirmer A, Reischauer A et al. Expression of ABC-transport proteins in canine mammary cancer: consequences for chemotherapy. Reprod Domest Anim. 2009; 44 Suppl 2218-23.

  • Koltai Z, Vajdovich P. Expression of multidrug resistance membrane transporter (pgp) and p53 protein in canine mammary tumours. Acta Vet Hung. 2014;62(2):194–204.

    Article 
    PubMed 

    Google Scholar
     

  • Virkel G, Ballent M, Lanusse C, et al. Role of ABC transporters in Veterinary Medicine: Pharmaco- Toxicological implications. Curr Med Chem. 2019;26(7):1251–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levi M, Brunetti B, Sarli G, et al. Immunohistochemical expression of P-glycoprotein and breast Cancer resistance protein in Canine Mammary Hyperplasia, Neoplasia and supporting stroma. J Comp Pathol. 2016;155(4):277–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levi M, Pena L, Alonso-Diez A, et al. P-Glycoprotein and breast Cancer resistance protein in Canine Inflammatory and Noninflammatory Grade III Mammary Carcinomas. Vet Pathol. 2019;56(6):840–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nwankwo JO, Robbins ME. Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot Essent Fat Acids. 2001;64(4–5):241–5.

    Article 
    CAS 

    Google Scholar
     

  • Martelli ML, Iuliano R, Le Pera I, et al. Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab. 2002;87(10):4728–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshizawa K, Cioca DP, Kawa S, et al. Peroxisome proliferator-activated receptor gamma ligand troglitazone induces cell cycle arrest and apoptosis of hepatocellular carcinoma cell lines. Cancer. 2002;95(10):2243–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suh N, Wang Y, Williams CR, et al. A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis. Cancer Res. 1999;59(22):5671–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Gerhold DL, Liu F, Jiang G, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology. 2002;143(6):2106–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5(8):442–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu D, Carson DA. Repression of beta-catenin signaling by PPAR gamma ligands. Eur J Pharmacol. 2010;636(1–3):198–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma C, Pradeep A, Wong L, et al. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem. 2004;279(34):35583–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djouadi F, Lecarpentier Y, Hebert JL, et al. A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res. 2009;84(1):83–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu D, Cottam HB, Corr M, et al. Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A. 2005;102(51):18567–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39(3):305–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatsell S, Rowlands T, Hiremath M, et al. Beta-catenin and tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2003;8(2):145–58.

    Article 
    PubMed 

    Google Scholar
     

  • Sanchez-Tillo E, de Barrios O, Siles L, et al. beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A. 2011;108(48):19204–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98(18):10356–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng A, Liang X, Zhu S, et al. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF–kappaB signaling pathway. Oncol Rep. 2021;45(2):717–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai J, Cheung S, Chan E, et al. Antiproliferation effect of commercially brewed coffees on human ovarian cancer cells in vitro. Nutr Cancer. 2010;62(8):1044–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonenc A, Ozkan Y, Torun M, et al. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther. 2001;26(2):141–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutachok N, Koonyosying P, Pankasemsuk T et al. Chemical Analysis, Toxicity Study, and free-radical scavenging and Iron-binding assays involving coffee (Coffea arabica) extracts. Molecules. 2021; 26(14).



  • Source link