Scientific Papers

Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA | Journal of Nanobiotechnology


  • Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv Drug Deliv Rev. 2020;154–155:37–63.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki T, Suzuki Y, Hihara T, Kubara K, Kondo K, Hyodo K, Yamazaki K, Ishida T, Ishihara H. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int J Pharm. 2020;588:119792.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC. K T Yong, and C K Chen. Recent advances in Engineering carriers for siRNA delivery. Macromol Biosci. 2023: e2300362.

  • Lamb YN, Inclisiran. First Approval Drugs. 2021;81(3):389–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca A, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today. 2023;28(2):103458.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichmuth AM, O M, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–334.

  • Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery systems for mRNA vaccines. Vaccines (Basel). 2021;9(1):65.

  • Wang Q, Jiang Q, Li D, Yang Z, Gao L, Liu F, Li C, Feng Y, He Z, Luo C, Sun J. Elaborately engineering of lipid nanoparticle for targeting delivery of siRNA and suppressing acute liver injury. Chin Chem Lett. 2024;35(2):108683.

  • Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 2021;601:120586.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco MJ, Alishetty S, Alameh MG, Said H, Wright L, Paige M, Soliman O, Weissman D, t Cleveland TE, Grishaev A, Buschmann MD. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol. 2021;4(1):956.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov O, Himansu S, Deterling J, Geilich BM, Ketova T, Mihai C, Lynn A, McFadyen I, Moore MJ, Senn JJ, Stanton MG, Almarsson O, Ciaramella G, Brito LA. Optimization of lipid nanoparticles for Intramuscular Administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD, Trisal M, Wimmers F, Sanyal M, Weidenbacher PA, Feng Y, Adamska JZ, Valore E, Wang Y, Verma R, Reis N, Dunham D, O’Hara R, Park H, Luo W, Gitlin AD, Kim P, Khatri P, Nadeau KC, Pulendran B. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billingsley MM, Hamilton AG, Mai D, Patel SK, Swingle KL, Sheppard NC, June CH, Mitchell MJ. Orthogonal Design of experiments for optimization of lipid nanoparticles for mRNA Engineering of CAR T cells. Nano Lett. 2022;22(1):533–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for Human CAR T Cell Engineering. Nano Lett. 2020;20(3):1578–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rurik JG, Tombacz I, Yadegari A, Mendez Fernandez PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Pure E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okuda K, Sato Y, Iwakawa K, Sasaki K, Okabe N, Maeki M, Tokeshi M, Harashima H. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device. J Control Release. 2022;348:648–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatzikleanthous D, D T O’Hagan. Lipid-based nanoparticles for delivery of Vaccine adjuvants and antigens: toward Multicomponent vaccines. Mol Pharm. 2021;18(8):2867–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release. 2024;365:491–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A. 2021;118(52):e2109256118.

  • Ryals RC, Patel S, Acosta C, McKinney M, Pennesi ME, Sahay G. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE. 2020;15(10):e0241006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashiba K, Sato Y, Harashima H. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes. J Control Release. 2017;262:239–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grenier P, Chenard V, Bertrand N. The mechanisms of anti-PEG immune response are different in the spleen and the lymph nodes. J Control Release. 2023;353:611–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki Y, Ishihara H. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Int J Pharm. 2016;510(1):350–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen D, Zoncu R, Buganim Y, Schroeder A, Langer R, Anderson DG. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31(7):653–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui L, Hunter MR, Sonzini S, Pereira S, Romanelli SM, Liu K, Li W, Liang L, Yang B, Mahmoudi N, Desai AS. Mechanistic studies of an automated lipid nanoparticle reveal critical Pharmaceutical Properties Associated with enhanced mRNA functional delivery in Vitro and in vivo. Small. 2022;18(9):e2105832.

    Article 
    PubMed 

    Google Scholar
     

  • Di J, Du Z, Wu K, Jin S, Wang X, Li T, Xu Y. Biodistribution and non-linear gene expression of mRNA LNPs affected by Delivery Route and particle size. Pharm Res. 2022;39(1):105–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, Acosta E, Almarsson O, Moore MJ, Brito LA. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release. 2021;335:237–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju Y, Lee WS, Pilkington EH, Kelly HG, Li S, Selva KJ, Wragg KM, Subbarao K, Nguyen THO, Rowntree LC, Allen LF, Bond K, Williamson DA, Truong NP, Plebanski M, Kedzierska K, Mahanty S, Chung AW, Caruso F, Wheatley AK, Juno JA, Kent SJ. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano. 2022;16(8):11769–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh EE, Frenck RW Jr., Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Tureci O, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU. Sahin, and W C Gruber. Safety and Immunogenicity of two RNA-Based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estape Senti M, C A de Jongh K, Dijkxhoorn JJF, Verhoef J, Szebeni G, Storm CE, Hack RM, Schiffelers MH, Fens, Boross P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Control Release. 2022;341:475–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey-Hytholt CM, Ghosh P, Dugas J, Zarraga IE, Bandekar A. Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform. J Vis Exp. 2021;(168):e62226.

  • Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012;134(16):6948–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release. 2022;344:80–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, Song HH, Chen LP, Lin YY, Jiang D, Chen J, Feng JF, Qiu YM, Jiang JY, Jiang XG, Chen HZ, Gao XL. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to ras-activated glioblastoma cells via macropinocytosis. Nat Commun. 2017;8:15144.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15(17):1193–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter MR, Cui L, Porebski BT, Pereira S, Sonzini S, Odunze U, Iyer P, Engkvist O, Lloyd RL, Peel S, Sabirsh A, Ross-Thriepland D, Jones AT. Desai. Understanding Intracellular Biology to improve mRNA delivery by lipid nanoparticles. Small Methods. 2023;7(9):e2201695.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Jozic A, Lin Y, Eygeris Y, Bloom E, Tan X, Acosta C, MacDonald KD, Welsher KD, Sahay G. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through Inhalation. ACS Nano. 2022;16(9):14792–806.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger M, Degey M, Leblond Chain J, Maquoi E, Evrard B, Lechanteur A, Piel G. Effect of PEG anchor and serum on lipid nanoparticles: development of a nanoparticles tracking method. Pharmaceutics. 2023;15(2):597.

  • Mui BL, Tam YK, Jayaraman M, Ansell SM, Du X, Tam YY, Lin PJ, Chen S, Narayanannair JK, Rajeev KG, Manoharan M, Akinc A, Maier MA, Cullis P, Madden TD, Hope MJ. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol Ther Nucleic Acids. 2013;2(12):e139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller JA, Schaffler N, Kellerer T, Schwake G, Ligon TS, Radler JO. Kinetics of RNA-LNP delivery and protein expression. Eur J Pharm Biopharm. 2024;197:114222.

    Article 
    PubMed 

    Google Scholar
     

  • Wilson SC, Baryza JL, Reynolds AJ, Bowman K, Keegan ME, Standley SM, Gardner NP, Parmar P, Agir VO, Yadav S, Zunic A, Vargeese C, Lee CC, Rajan S. Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy. Mol Pharm. 2015;12(2):386–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hattori Y, Tamaki K, Sakasai S, Ozaki KI, Onishi H. Effects of PEG anchors in PEGylated siRNA lipoplexes on in vitro gene–silencing effects and siRNA biodistribution in mice. Mol Med Rep. 2020;22(5):4183–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarode A, Fan Y, Byrnes AE, Hammel M, Hura GL, Fu Y, Kou P, Hu C, Hinz FI, Roberts J, Koenig SG, Nagapudi K, Hoogenraad CC, Chen T, Leung D, Yen CW. Predictive high-throughput screening of PEGylated lipids in oligonucleotide-loaded lipid nanoparticles for neuronal gene silencing. Nanoscale Adv. 2022;4(9):2107–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link