Scientific Papers

The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections | Veterinary Research


  • Cakir I, Nillni EA (2019) Endoplasmic reticulum stress, the hypothalamus, and energy balance. Trend Endocrin Met 30:163–176

    Article 
    CAS 

    Google Scholar
     

  • Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C (2018) ER proteostasis control of neuronal physiology and synaptic function. Trend Neurosci 41:610–624

    Article 
    PubMed 

    Google Scholar
     

  • Miglioranza Scavuzzi B, Holoshitz J (2022) Endoplasmic reticulum stress, oxidative stress, and rheumatic diseases. Antioxidants 11:1306

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu XJ, Cui JJ, Meng XJ, Jiang PY, Zheng QL, Zhao WW, Chen XH (2021) Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (review). Oncol Rep 45:801–808

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chipurupalli S, Samavedam U, Robinson N (2021) Crosstalk between ER stress, autophagy and inflammation. Front Med 8:758311

    Article 

    Google Scholar
     

  • Huang WL, Gong YN, Yan L (2023) ER stress, the unfolded protein response and osteoclastogenesis: a review. Biomolecules 13:1050

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen XY, Stolz DB, Shao ZM, Yin XM (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282:4702–4710

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hetz C, Zhang KZ, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Bio 21:421–438

    Article 
    CAS 

    Google Scholar
     

  • Ren J, Bi YG, Sowers JR, Hetz C, Zhang YM (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18:499–521

    Article 
    PubMed 

    Google Scholar
     

  • Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S (2016) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12:225–244

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song JY, Fan B, Che L, Pan YR, Zhang SM, Wang Y, Bunik V, Li GY (2020) Suppressing endoplasmic reticulum stress-related autophagy attenuates retinal light injury. Aging 12:16579–16596

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK (2020) Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 66:116–128

    Article 
    PubMed 

    Google Scholar
     

  • Sharma M, Bhattacharyya S, Sharma KB, Chauhan S, Asthana S, Abdin MZ, Vrati S, Kalia M (2017) Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cells. J Gen Virol 98:1027–1039

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun P, Jin J, Wang LX, Wang JJ, Zhou HC, Zhang Q, Xu XG (2021) Porcine epidemic diarrhea virus infections induce autophagy in vero cells via ROS-dependent endoplasmic reticulum stress through PERK and IRE1 pathways. Vet Microbiol 253:108959

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu EP, Chen WX, Qin YW, Ma SM, Fan SQ, Wu KK, Li WH, Fan JD, Yi L, Ding HX, Chen JD, Zhao MQ (2019) Classical swine fever virus infection induces endoplasmic reticulum stress-mediated autophagy to sustain viral replication in vivo and in vitro. Front Microbiol 10:2545

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashid HO, Yadav RK, Kim HR, Chae HJ (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He CC, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji YB, Zhang L, Xin GS, Li YL, Yang Q, Li X, Xue QB (2016) Research progress on interaction mechanism of endoplasmic reticulum stress response and cell autophagy. Food Drug 18:443–447


    Google Scholar
     

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni MS, Chen L, Bao X, Yun JW, Xu Y, Feng L (2022) Endoplasmic reticulum stress and virus infection: a review. Jiangsu Agricult Sci 50:180–186


    Google Scholar
     

  • Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trend Biochem Sci 40:141–148

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cybulsky AV (2017) Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 13:681–696

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fung TS, Torres J, Liu DX (2015) The emerging roles of viroporins in ER stress response and autophagy induction during virus infection. Viruses 7:2834–2857

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burkewitz K, Feng GM, Dutta S, Kelley CA, Steinbaugh M, Cram EJ, Mair WB (2020) ATF-6 regulates lifespan through ER-mitochondrial calcium homeostasis. Cell Rep 32:108125

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao Q, Sun CN, Han CY, Han N, Zhang M, Li G (2017) Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci 108:1421–1431

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19:1880–1891

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trend Cell Biol 23:547–555

    Article 
    CAS 

    Google Scholar
     

  • Vergne I, Deretic V (2010) The role of PI3P phosphatases in the regulation of autophagy. Febs Lett 584:1313–1318

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li JR, Guo F (2008) IRE1-dependent XBP1 splicing mechanism during endoplasmic reticulum stress response. Chem Life 28:286–288

  • Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walter F, O’Brien A, Concannon CG, Düssmann H, Prehn J (2018) ER stress signaling has an activating transcription factor 6α (ATF6)-dependent “off-switch.” J Biol Chem 293:18270–18284

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Tang YX, Kang JX, Xu YR, Elsherbeni A, Gharib H, Li JL (2022) Astragalus polysaccharide alleviates transport stress-induced heart injury in newly hatched chicks via ERS-UPR-autophagy dependent pathway. Poult Sci 101:102030

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman OI, Haller D (2019) ER stress and the UPR in shaping intestinal tissue homeostasis and immunity. Front Immunol 10:2825

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou YS, Qi BZ, Gu YX, Xu F, Du HH, Li XL, Fang WH (2016) Porcine circovirus 2 deploys PERK pathway and GRP78 for its enhanced replication in PK-15 cells. Viruses 8:56

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang YL, Xu L, Lv JM, Hou YF, Fan ZX, Xu PP, Jiang YF, Wu MM, Li R, Zhang YM, Guo KK (2019) Porcine circovirus type 2 ORF5 protein induces endoplasmic reticulum stress and unfolded protein response in porcine alveolar macrophages. Arch Virol 164:1323–1334

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Li X, Zhang XW, Niu GY, Yang L, Ji WL, Zhang LY, Ren LZ (2022) PCV2 and PRV coinfection induces endoplasmic reticulum stress via PERK-eIF2α-ATF4-CHOP and IRE1-XBP1-EDEM pathways. Int J Mol Sci 23:4479

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Ma XM, Wang HM, He HB (2020) Induction of the unfolded protein response during bovine alphaherpesvirus 1 infection. Viruses 12:974

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal N, Saini S, Khanna M, Dhawan G, Dhawan U (2022) Pharmacological manipulation of UPR: potential antiviral strategy against chikungunya virus. Indian J Microbiol 62:634–640

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Ni MS, Ahmed W, Xu Y, Bao X, Zhuang TH, Feng L, Guo MJ (2022) Pseudorabies virus infection induces endoplasmic reticulum stress and unfolded protein response in suspension-cultured BHK-21 cells. J Gen Virol 103:1818

    Article 
    CAS 

    Google Scholar
     

  • Liu YT, Li GX, Wang B (2021) Herpesvirus and endoplasmic reticulum stress. Sheng Wu Gong Cheng Xue Bao 37:67–77

    PubMed 

    Google Scholar
     

  • Yang SB, Zhu JJ, Zhou XL, Wang H, Li XC, Zhao AY (2019) Induction of the unfolded protein response (UPR) during pseudorabies virus infection. Vet Microbiol 239:108485

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin HC, Zhao LL, Jiang XJ, Li SQ, Huo H, Chen HY (2017) DEV induce autophagy via the endoplasmic reticulum stress related unfolded protein response. PLoS One 12:e189704

    Article 

    Google Scholar
     

  • Neerukonda SN, Katneni UK, Bott M, Golovan SP, Parcells MS (2018) Induction of the unfolded protein response (UPR) during Marek’s disease virus (MDV) infection. Virology 522:1–12

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao LY, Xue M, Chen JF, Shi HY, Zhang X, Shi D, Liu JB, Huang LP, Wei YW, Liu CM, Feng L (2020) Porcine parvovirus replication is suppressed by activation of the PERK signaling pathway and endoplasmic reticulum stress-mediated apoptosis. Virology 539:1–10

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl S, Burkhart JM, Hinte F, Tirosh B, Mohr H, Zahedi RP, Sickmann A, Ruzsics Z, Budt M, Brune W (2013) Cytomegalovirus downregulates IRE1 to repress the unfolded protein response. PLoS Pathog 9:e1003544

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boon JAD, Diaz A, Ahlquist P (2010) Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85

    Article 

    Google Scholar
     

  • Salonen A, Ahola T, Kääriäinen L (2005) Viral RNA replication in association with cellular membranes. Curr Top Microbiol 285:139–173

    CAS 

    Google Scholar
     

  • Tian LP, Feng GR, Lu HJ, Xiao PP, Li N, Jin NY (2023) Research progress on the effects of endoplasmic reticulum stress caused by virus infection on different biological functions. J Pathog Biol 18:486–488


    Google Scholar
     

  • Wang Y, Li JR, Sun MX, Ni B, Huan C, Huang L, Li C, Fan HJ, Ren XF, Mao X (2014) Triggering unfolded protein response by 2-Deoxy-d-glucose inhibits porcine epidemic diarrhea virus propagation. Antivir Res 106:33–41

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu XG, Zhang HL, Zhang Q, Dong J, Liang YB, Huang Y, Liu HJ, Tong DW (2013) Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J 10:26

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Ren JP, Yang G, Jiang CS, Dong L, Sun Q, Hu YF, Li WT, He QG (2023) Porcine epidemic diarrhea virus and its NSP14 suppress ER stress induced GRP78. Int J Mol Sci 24:4936

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma YL, Xue M, Fu F, Yin ND, Guo SH, Feng L, Liu PH (2018) Spike protein of porcine epidemic diarrhea virus mediates virus induced endoplasmic reticulum stress. Chin J Prev Vet Med 40:1043–1048


    Google Scholar
     

  • Xu JX, Wu XN, Wang XH, Xu WH, Gao XY, Zheng L, Wu ZJ, Zhang H, Cao HW (2021) Preliminary study on the subcellular localization of PEDV NSP6 protein and the induction of endoplasmic reticulum stress. J Heilongjiang Bayi Agricult Univ 33:80–85


    Google Scholar
     

  • Xu XG, Zhang HL, Zhang Q, Huang Y, Dong J, Liang YB, Liu HJ, Tong DW (2013) Porcine epidemic diarrhea virus n protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet Microbiol 164:212–221

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou DH, Xu JX, Duan XL, Xu X, Li PF, Cheng LX, Zheng L, Li XZ, Zhang YT, Wang XH, Wu XN, Shen YJ, Yao XY, Wei JQ, Yao LL, Li LY, Song BF, Ma JZ, Liu XY, Wu ZJ, Zhang H, Cao HW (2019) Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Vet Microbiol 235:209–219

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthuraj PG, Sahoo PK, Kraus M, Bruett T, Annamalai AS, Pattnaik A, Pattnaik AK, Byrareddy SN, Natarajan SK (2021) Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discov 7:24

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R (2020) Endoplasmic reticulum: a focal point of Zika virus infection. J Biomed Sci 27:27

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan ZY, Zhang WP, Sun JH, Fu ZQ, Ke XL, Zheng CS, Zhang Y, Li PH, Liu Y, Hu QX, Wang HZ, Zheng ZH (2018) ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells. J Neuroinflamm 15:275

    Article 

    Google Scholar
     

  • Zhao DM, Yang J, Han KK, Liu QT, Wang HL, Liu YZ, Huang XM, Zhang LJ, Li Y (2019) The unfolded protein response induced by tembusu virus infection. BMC Vet Res 15:34

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang CC, Zhao FX, Guo MJ, Ruan BY, Wang XF, Wu YT, Zhang XR (2020) CSFV protein NS5A activates the unfolded protein response to promote viral replication. Virology 541:75–84

    Article 
    CAS 

    Google Scholar
     

  • He WC, Xu HL, Gou HC, Yuan J, Liao JD, Chen YM, Fan SQ, Xie BM, Deng SF, Zhang YY, Chen JD, Zhao MQ (2017) CSFV infection up-regulates the unfolded protein response to promote its replication. Front Microbiol 8:2129

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang PX, Tian LY, Zhang HC, Xia SJ, Ding T, Zhu XR, Zhang JS, Ren J, Fang LR, Xiao SB (2022) Induction and modulation of the unfolded protein response during porcine deltacoronavirus infection. Vet Microbiol 271:109494

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu C, Achazi K, Niedrig M (2013) Tick-borne encephalitis virus triggers inositol-requiring enzyme 1 (IRE1) and transcription factor 6 (ATF6) pathways of unfolded protein response. Virus Res 178:471–477

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen QG, Men YJ, Wang D, Xu DQ, Liu SY, Xiao SB, Fang LR (2020) Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis. Sci Rep 10:13131

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao P, Chai Y, Song JW, Liu T, Chen P, Zhou L, Ge XN, Guo X, Han J, Yang HC (2019) Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathog 15:e1008169

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catanzaro N, Meng XJ (2020) Induction of the unfolded protein response (UPR) suppresses porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Res 276:197820

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang SS (2021) Regulation of non-structural proteins in Japanese encephalitis virus on endoplasmic reticulum stress-autophagy. Master thesis, Yangtze University, college of animal science & technology

  • Wang GX, Zeng Y, Yu T, Lin JF, Wang LH, Liu SW, Ren L (2021) Role and mechanism of endoplasmic reticulum stress in Japanese encephalitis virus induced neuronal apoptosis. Chin J Virol 37:1420–1427

    CAS 

    Google Scholar
     

  • Wang SS, Yang KL, Li C, Liu W, Gao T, Yuan FY, Guo R, Liu ZW, Tan YQ, Hu XW, Tian YX, Zhou DN (2023) 4-Phenyl-butyric acid inhibits Japanese encephalitis virus replication via inhibiting endoplasmic reticulum stress response. Viruses 15:534

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo JN (2020) Effects of endoplasmic reticulum stress induced by peste des petits ruminants virus on virus replication. Master thesis, Northwest A&F University, college of veterinary medicine

  • Shokeen K, Srivathsan A, Kumar S (2021) Lithium chloride functions as Newcastle disease virus-induced ER-stress modulator and confers anti-viral effect. Virus Res 292:198223

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YR (2018) Study on apoptosis induced by endoplasmic reticulum stress response during Newcastle disease virus infection. PhD thesis, Chinese academy of agricultural sciences

  • Frontini-López YR, Rivera L, Pocognoni CA, Roldán JS, Colombo MI, Uhart M, Delgui LR (2023) Infectious bursal disease virus assembly causes endoplasmic reticulum stress and lipid droplet accumulation. Viruses 15:1295

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelekar A (2005) Autophagy. Ann N Y Acad Sci 1066:259–271

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda S, Zablocki D, Sadoshima J (2022) The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol 165:1–8

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He ZH, Guo LN, Shu YL, Fang QJ, Zhou H, Liu YZ, Liu DD, Lu L, Zhang XL, Ding XQ, Liu D, Tang ML, Kong WJ, Sha SH, Li HW, Gao X, Chai RJ (2017) Autophagy protects auditory hair cells against neomycin-induced damage. Autophagy 13:1884–1904

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv JM, Jiang YF, Feng QW, Fan ZX, Sun Y, Xu PP, Hou YF, Zhang XP, Fan YX, Xu XG, Zhang YM, Guo KK (2020) Porcine circovirus type 2 ORF5 protein induces autophagy to promote viral replication via the PERK-eIF2α-ATF4 and mTOR-ERK1/2-AMPK signaling pathways in PK-15 cells. Front Microbiol 11:320

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monaci S, Coppola F, Rossi D, Giuntini G, Filippi I, Marotta G, Sozzani S, Carraro F, Naldini A (2022) Hypoxia induces autophagy in human dendritic cells: involvement of class III PI3K/Vps34. Cells-Basel 11:1695

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Wu YP, Gu LQ, Yang L, You ZQ, Xin YF (2018) Progress in molecular signal pathways of autophagy. Chem Life 38:213–223


    Google Scholar
     

  • Chen T, Tu SY, Ding L, Jin ML, Chen HC, Zhou HB (2023) The role of autophagy in viral infections. J Biomed Sci 30:5

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, Nakamura K (2015) CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways. Oncotarget 6:39692–39701

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jassey A, Jackson WT (2023) Viruses and autophagy: bend, but don’t break. Nat Rev Microbiol 22:309–321

    Article 
    PubMed 

    Google Scholar
     

  • Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O (2022) Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 176:103749

    Article 
    PubMed 

    Google Scholar
     

  • Huang JL, Gao LK, Li BS, Liu C, Hong SS, Min J, Hong L (2019) Knockdown of hypoxia-inducible factor 1α (HIF-1α) promotes autophagy and inhibits phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in ovarian cancer cells. Med Sci Monit 25:4250–4263

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang SY, Li HY, Yuan MH, Fan HX, Cai ZY (2022) Role of AMPK in autophagy. Front Physiol 13:1015500

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aquila S, Santoro M, Caputo A, Panno ML, Pezzi V, De Amicis F (2020) The tumor suppressor as molecular switch node regulating cell metabolism and autophagy: implications in immune system and tumor microenvironment. Cells 9:1725

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saikia R, Joseph J (2021) AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med 99:1539–1551

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XJ, Ma PP, Shao T, Xiong YL, Du Q, Chen SB, Miao BC, Zhang XZ, Wang XY, Huang Y, Tong DW (2022) Porcine parvovirus triggers autophagy through the AMPK/Raptor/mTOR pathway to promote viral replication in porcine placental trophoblasts. Vet Res 53:33

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu BL, Zhou YS, Xu F, Shuai JB, Li XL, Fang WH (2012) Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 cells. J Virol 86:12003–12012

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang XP, Qi XF, Yang B, Chen SY, Wang JY (2018) Autophagy benefits the replication of egg drop syndrome virus in duck embryo fibroblasts. Front Microbiol 9:1091

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv LJ, Guan JY, Zhen RX, Lv P, Xu MS, Liu XY, He SS, Fang ZY, Li Z, Lan YG, Lu HJ, He WQ, Gao F, Zhao K (2023) Orf virus induces complete autophagy to promote viral replication via inhibition of AKT/mTOR and activation of the ERK1/2/mTOR signalling pathway in OFTu cells. Vet Res 54:22

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimmon GL, Hui J, Wileman TE, Netherton CL (2021) Autophagy impairment by African swine fever virus. J Gen Virol 102:1637

    Article 
    CAS 

    Google Scholar
     

  • Banjara S, Shimmon GL, Dixon LK, Netherton CL, Hinds MG, Kvansakul M (2019) Crystal structure of African swine fever virus A179L with the autophagy regulator Beclin. Viruses 11:789

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun MX, Hou LL, Tang YD, Liu YG, Wang SJ, Wang JF, Shen N, An TQ, Tian ZJ, Cai XH (2017) Pseudorabies virus infection inhibits autophagy in permissive cells in vitro. Sci Rep 7:39964

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong HH, Sanyal S (2020) Manipulation of autophagy by (+) RNA viruses. Semin Cell Dev Biol 101:3–11

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei JJ, Zhao MQ, Ye ZD, Gou HC, Wang JY, Yi L, Dong XY, Liu WJ, Luo YW, Liao M, Chen JD (2014) Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 10:93–110

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong WY, Mao JX, Yang Y, Yuan J, Chen JH, Luo Y, Lai T, Zuo L (2020) Mechanisms of mTOR and autophagy in human endothelial cell infected with dengue virus-2. Viral Immunol 33:61–70

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren SH, Rehman ZU, Shi MY, Yang B, Qu YR, Yang XF, Shao Q, Meng CC, Yang ZQ, Gao XL, Sun YJ, Ding C (2019) Syncytia generated by hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus induce complete autophagy by activating AMPK-mTORC1-ULK1 signaling. Vet Microbiol 230:283–290

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Guo ZJ, Zhang R, Zhang ZX, Hu B, Bai L, Zhao SY, Wu YS, Zhang ZD, Li YM (2023) Canine distemper virus n protein induces autophagy to facilitate viral replication. BMC Vet Res 19:60

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiramel AI, Best SM (2018) Role of autophagy in zika virus infection and pathogenesis. Virus Res 254:34–40

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong N, Wu YG, Meng Q, Wang ZZ, Zuo YW, Pan X, Tong W, Zheng H, Li GX, Yang S, Yu H, Zhou EM, Shan TL, Tong GZ (2016) Suppression of virulent porcine epidemic diarrhea virus proliferation by the PI3K/Akt/GSK-3α/β pathway. PLoS One 11:e161508

    Article 

    Google Scholar
     

  • Lin HX, Li B, Liu MX, Zhou H, He KW, Fan HJ (2020) Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis. Vet Microbiol 244:108684

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi D, Zhou L, Shi HY, Zhang JY, Zhang JL, Zhang LY, Liu DK, Feng TS, Zeng MM, Chen JF, Zhang X, Xue M, Jing ZY, Liu JB, Ji ZY, He HJ, Guo LJ, Wu Y, Ma JY, Feng L (2023) Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 19:e1011201

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng SY, Zhao Y, Peng OY, Xia Y, Xu QP, Li HM, Xue CY, Cao YC, Zhang H (2022) Swine acute diarrhea syndrome coronavirus induces autophagy to promote its replication via the Akt/mTOR pathway. iScience 25:105394

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cymerys J, Miszczak D, Slonska A, Golke A, Banbura MW (2014) Autophagy in cultured murine neurons infected with equid herpesvirus 1. Acta Virol 58:292–295

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahoo BR, Pattnaik A, Annamalai AS, Franco R, Pattnaik AK (2020) Mechanistic target of rapamycin signaling activation antagonizes autophagy to facilitate zika virus replication. J Virol 94:e01575-20

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F (2021) The role of autophagy in murine cytomegalovirus hepatitis. Viral Immunol 34:241–255

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Zhang YS, Pan J, Tong XY, Zhang X, Hu XL, Gong CL (2022) Grass carp reovirus triggers autophagy enhancing virus replication via the Akt/mTOR pathway. Fish Shellfish Immun 128:148–156

    Article 
    CAS 

    Google Scholar
     

  • Gladue DP, O’Donnell V, Baker-Branstetter R, Holinka LG, Pacheco JM, Fernandez-Sainz I, Lu Z, Brocchi E, Baxt B, Piccone ME, Rodriguez L, Borca MV (2012) Foot-and-mouth disease virus nonstructural protein 2C interacts with beclin1, modulating virus replication. J Virol 86:12080–12090

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Liao M, Yan Y, Yang H, Wang HL, Zhou JY (2020) Rabies virus phosphoprotein P5 binding to BECN1 regulates self-replication by BECN1-mediated autophagy signaling pathway. Cell Commun Signal 18:153

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Chen KR, Guo Y, Chen YS, Liu XH (2019) Involvement of PRRSV NSP3 and NSP5 in the autophagy process. Virol J 16:13

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang YQ, Duan YL, Han CY, Yao S, Qi XL, Gao YL, Maier HJ, Britton P, Chen L, Zhang LZ, Gao L, Gao HL, Shen N, Wang JF, Wang XM (2017) Infectious bursal disease virus subverts autophagic vacuoles to promote viral maturation and release. J Virol 91:e01883-16

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad-Rezaei M, Mafi S, Jafarinia M (2022) PI3K/Akt/mTOR pathway: a potential target for anti-SARS-CoV-2 therapy. Immunol Res 70:269–275

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou PL, Wang XF, Wang HM, Wang TC, Yu ZP, Xu CQ, Zhao YD, Wang WQ, Zhao Y, Chu FY, Chang HS, Zhu HC, Lu JH, Zhang FZ, Liang X, Li XY, Wang S, Gao YW, He HB (2023) The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy 19:551–569

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li MH, Yan P, Shen X, Liu ZN, Wang QX, Huang YF, Wu YJ (2021) Muscovy duck reovirus promotes virus replication by inhibiting autophagy-lysosomal degradation pathway. Vet Microbiol 253:108945

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin R, Zhu WD, Cao SB, Chen R, Jin H, Liu Y, Wang SB, Wang W, Xiao GF (2013) Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One 8:e52909

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma M, Sharma KB, Chauhan S, Bhattacharyya S, Vrati S, Kalia M (2018) Diphenyleneiodonium enhances oxidative stress and inhibits Japanese encephalitis virus induced autophagy and ER stress pathways. Biochem Biophys Res Commun 502:232–237

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XJ, Hou L, Du JG, Zhou L, Ge XN, Guo X, Yang HC (2015) Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Vet Microbiol 178:217–229

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su S, Zhang D, Liu JJ, Zhao HY, Tang XL, Che HX, Wang QM, Ren WN, Zhen DH (2022) Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells. J Bone Miner Metab 40:422–433

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Levine B (2014) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22:193–201

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover K, Sher AA, Coombs KM, Ghavami S (2019) The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 10:376–413

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan JH, Dou XY, Zhou J, Xiong YF, Mo L, Li LH, Lei YL (2019) Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. J Exp Clin Cancer Res 38:353

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen HM, Berry L, Sullivan WJ, Besteiro S (2017) Autophagy participates in the unfolded protein response in Toxoplasma gondii. FEMS Microbiol Lett 354:fnx153

  • Qi Z, Chen L (2019) Endoplasmic reticulum stress and autophagy. Adv Exp Med Biol 1206:167–177

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song SL, Tan J, Miao YY, Zhang Q (2018) Crosstalk of ER stress-mediated autophagy and ER-phagy: involvement of UPR and the core autophagy machinery. J Cell Physiol 233:3867–3874

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • B’Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucl Acid Res 41:7683–7699

    Article 

    Google Scholar
     

  • Li Q, Fan Y, Shi XY, Guo DY (2021) Research progress of endoplasmic reticulum stress-induced autophagy in liver diseases. Chin Bull Life Sci 33:876–887


    Google Scholar
     

  • Diao FF, Jiang CL, Sun YY, Gao YN, Bai J, Nauwynck H, Wang XW, Yang YQ, Jiang P, Liu X (2023) Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog 19:e1011295

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YR, Kuo SH, Lin CY, Fu PJ, Lin YS, Yeh TM, Liu HS (2018) Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci Rep 8:489

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu EP, Wu HW, Chen WX, Qin YW, Liu JM, Fan SQ, Ma SM, Wu KK, Mao Q, Luo CW, Qin YX, Yi L, Ding HX, Zhao MQ, Chen JD (2021) Classical swine fever virus employs the PERK- and IRE1-dependent autophagy for viral replication in cultured cells. Virulence 12:130–149

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng JH, Sun YJ, Zhang FQ, Zhang XR, Qiu XS, Yu LP, Wu YT, Ding C (2016) Newcastle disease virus NP and p proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci Rep 6:24721

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao YH (2016) Recombinant Newcastle disease virus (rl-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress. Master thesis, Jiangsu University, college of medicine

  • Hou L, Dong JG, Zhu SS, Yuan F, Wei L, Wang J, Quan R, Chu J, Wang D, Jiang HJ, Xi YY, Li ZX, Song HQ, Guo YX, Lv MR, Liu J (2019) Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways. Virology 537:254–263

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv S, Sun EC, Xu QY, Zhang JK, Wu DL (2015) Endoplasmic reticulum stress-mediated autophagy contributes to bluetongue virus infection via the PERK-eIF2α pathway. Biochem Biophys Res Commun 466:406–412

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen B, Yang LL, Guo JN, Chang WC, Wei SP, Yu SM, Qi XF, Xue QH, Wang JY (2022) Peste des petits ruminants virus induces ERS-mediated autophagy to promote virus replication. Vet Microbiol 270:109451

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun P, Zhang SM, Qin XD, Chang XN, Cui XR, Li HT, Zhang SJ, Gao HH, Wang PH, Zhang ZD, Luo JX, Li ZY (2018) Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 14:336–346

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Liu JX, Zhang X, Yu YP, Huang XH, Wei JG, Qin QW (2020) Red grouper nervous necrosis virus (RGNNV) induces autophagy to promote viral replication. Fish Shellfish Immun 98:908–916

    Article 
    CAS 

    Google Scholar
     

  • Liu BJ, Luo LZ, Shi ZQ, Ju HB, Yu LX, Li GX, Cui J (2023) Research progress of porcine reproductive and respiratory syndrome virus NSP2 protein. Viruses 15:2310

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He LG, Qian XH, Cui YX (2021) Advances in ER-phagy and its diseases relevance. Cells-Basel 10:2328

    Article 
    CAS 

    Google Scholar
     

  • Yang M, Luo SL, Wang X, Li CR, Yang JF, Zhu XJ, Xiao L, Sun L (2021) ER-phagy: a new regulator of ER homeostasis. Front Cell Dev Biol 9:684526

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knupp J, Pletan ML, Arvan P, Tsai B (2023) Autophagy of the ER: the secretome finds the lysosome. FEBS J 290:5656–5673

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mochida K, Nakatogawa H (2022) ER-phagy: selective autophagy of the endoplasmic reticulum. Embo Rep 23:e55192

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed AE, Cornelia EZ, Mohamed AR, Fatma BR, Salah El-Din DS (2020) Fine-tuning ER-phagy by post-translational modifications. BioEssays 43:e2000212


    Google Scholar
     

  • Abhilash IC, Jonathan DD, Vinod N, Shelly JR, Sonja MB (2016) FAM134B, the selective autophagy receptor for endoplasmic reticulum turnover, inhibits replication of ebola virus strains makona and mayinga. J Infect Dis 214:S319–S325

    Article 

    Google Scholar
     

  • Nicholas JL, Carolyn BC (2017) Dengue and zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13:322–332

    Article 

    Google Scholar
     

  • Tan X, Cai K, Li J, Yuan Z, Chen R, Xiao H, Xu C, Hu B, Qin Y, Ding B (2023) Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Rep 42:112286

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu MJ, Ke PY, Hsu JT, Yeh CT, Horng JT (2014) Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction. Cell Microbiol 16:1603–1618

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alessio R, Viviana B, Paolo G (2020) Eating the unknown: xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 396:112276

    Article 

    Google Scholar
     

  • Wu J, Zhang Z, Teng Z, Abdullah SW, Sun S, Guo H (2021) SEC62 regulates endoplasmic reticulum stress and autophagy balance to affect foot-and-mouth disease virus replication. Front Cell Infect Mi 11:707107

    Article 
    CAS 

    Google Scholar
     

  • Wati S, Soo ML, Zilm P, Li P, Paton AW, Burrell CJ, Beard M, Carr JM (2009) Dengue virus infection induces upregulation of GRP78, which acts to chaperone viral antigen production. J Virol 83:12871–12880

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diwaker D, Mishra KP, Ganju L (2015) Effect of modulation of unfolded protein response pathway on dengue virus infection. Acta Bioch Bioph Sin 47:960–968

    Article 
    CAS 

    Google Scholar
     

  • Denolly S, Guo HB, Martens M, Płaszczyca A, Scaturro P, Prasad V, Kongmanas K, Punyadee N, Songjaeng A, Mairiang D, Pichlmair A, Avirutnan P, Bartenschlager R (2023) Dengue virus NS1 secretion is regulated via importin-subunit β1 controlling expression of the chaperone GRP78 and targeted by the clinical drug ivermectin. MBio 14:e144123

    Article 

    Google Scholar
     

  • Carlos AJ, Ha DP, Yeh DW, Van Krieken R, Tseng CC, Zhang P, Gill P, Machida K, Lee AS (2021) The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J Biol Chem 296:100759

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha DP, Shin WJ, Hernandez JC, Neamati N, Dubeau L, Machida K, Lee AS (2023) GRP78 inhibitor YUM70 suppresses SARS-CoV-2 viral entry, spike protein production and ameliorates lung damage. Viruses 15:1118

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA (2021) SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 12:3818

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Zhao P, Zhang CS, Ming X, Zhang CF, Jung YS, Qian YJ (2024) Veratramine inhibits porcine epidemic diarrhea virus entry through macropinocytosis by suppressing PI3K/Akt pathway. Virus Res 339:199260

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian BX, Hu YX, Liu C, Zheng DX, Han XJ, Gong MX, Zou YL, Zeng DX, Liao K, Miao YR, Wu XD, Dai JJ, Wang ZL, Xue F (2024) Tetrandrine (TET) inhibits African swine fever virus entry into cells by blocking the PI3K/Akt pathway. Virus Res 339:199258

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang NN, Hu NN, Zhang JW, Yi JH, Wang Z, Wang Y, Wu P, Chen CF (2022) Bta-miR-2904 inhibits bovine viral diarrhea virus replication by targeting viral-infection-induced autophagy via ATG13. Arch Virol 168:11

    Article 
    PubMed 

    Google Scholar
     

  • Zhou LY, Haiyilati A, Li JX, Li XQ, Gao L, Cao H, Wang YQ, Zheng SJJ (2022) Gga-miR-30c-5p suppresses avian reovirus (ARV) replication by inhibition of ARV-induced autophagy via targeting ATG5. J Virol 96:e75922

    Article 

    Google Scholar
     



  • Source link