Scientific Papers

Spatially heterogeneous selection and inter-varietal differentiation maintain population structure and local adaptation in a widespread conifer | BMC Ecology and Evolution


  • Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes. 2013;9:901–11.

    Article 

    Google Scholar
     

  • Savolainen O, Pyhäjärvi T, Knürr T. Gene Flow and local adaptation in Trees. Annu Rev Ecol Evol Syst. 2007;38:595–619.

    Article 

    Google Scholar
     

  • Feng L, Du FK. Landscape Genomics in Tree Conservation under a changing environment. Front Plant Sci. 2022;13.

  • Bansal S, Harrington CA, Gould PJ, St.Clair JB. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob Chang Biol. 2015;21:947–58.

    Article 
    PubMed 

    Google Scholar
     

  • Montwé D, Spiecker H, Hamann A. Five decades of growth in a genetic field trial of Douglas-fir reveal trade-offs between productivity and drought tolerance. Tree Genet Genomes. 2015;11:29.

    Article 

    Google Scholar
     

  • Marias DE, Meinzer FC, Woodruff DR, McCulloh KA. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates. Tree Physiol. 2016. https://doi.org/10.1093/treephys/tpw117.

    Article 

    Google Scholar
     

  • De La Torre AR, Wilhite B, Puiu D, St. Clair JB, Crepeau MW, Salzberg SL, et al. Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. Genes (Basel). 2021;12:110.

    Article 
    PubMed 

    Google Scholar
     

  • Compton S, Stackpole C, Dixit A, Sekhwal MK, Kolb T, De la Torre AR. Differences in heat tolerance, water use efficiency and growth among Douglas-fir families and varieties evidenced by GWAS and common garden studies. AoB Plants. 2023;15.

  • Domínguez-Álvarez FA. Análisis histórico-ecológico De Los bosques de Pseudotsuga en México. Folleto Técnico INIFAP. 1994:43.

  • Reyes-Hernández V, Vargas-Hernández J, López-Upton J, Vaquera-Huerta H. Phenotypic similarity among Mexican populations of Pseudotsuga Carr. Agrociencia. 2006;40:545–56.


    Google Scholar
     

  • Acevedo-Rodriguez R, Vargas-Hernandez JJ, Lopez-Upton J, Mendoza JV. Effect of geographic origin and nutrition on shoot prenology of Mexican Douglas-fir (Pseudotsuga sp.) seedlings. Agrociencia. 2006;40:125–37.


    Google Scholar
     

  • Cruz-Nicolás J, Vargas-Hernández JJ, Ramírez-Vallejo P, López-Upton J. Genetic diversity and differentiation of Pseudotsuga menziesii (Mirb.) Franco populations in Mexico. Revista Fitotecnia Mexicana. 2011;34:233–40.

    Article 

    Google Scholar
     

  • Gugger PF, Sugita S, Cavender-Bares J. Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record. Mol Ecol. 2010;19:1877–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermann RK. The genus Pseudotsuga: ancestral history and past distribution. Forest Research Laboratory Special Publication 2b. Edited by: Corvallis, OR. Oregon State University, College of Forestry; 1985.

  • van Loo M, Hintsteiner W, Pötzelsberger E, Schüler S, Hasenauer H. Intervarietal and intravarietal genetic structure in Douglas-fir: nuclear SSRs bring novel insights into past population demographic processes, phylogeography, and intervarietal hybridization. Ecol Evol. 2015;5:1802–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei X-X, Beaulieu J, Khasa DP, Vargas-Hernández J, López-Upton J, Jaquish B, et al. Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir. Tree Genet Genomes. 2011;7:1025–40.

    Article 

    Google Scholar
     

  • Li P, Adams WT. Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsuga menziesii). Can J for Res. 1989;19:149–61.

    Article 

    Google Scholar
     

  • Neophytou C, Weisser A-M, Landwehr D, Šeho M, Kohnle U, Ensminger I, et al. Assessing the relationship between height growth and molecular genetic variation in Douglas-fir (Pseudotsuga menziesii) provenances. Eur J Res. 2016;135:465–81.

    Article 
    CAS 

    Google Scholar
     

  • Hintsteiner WJ, van Loo M, Neophytou C, Schueler S, Hasenauer H. The geographic origin of old Douglas-fir stands growing in Central Europe. Eur J Res. 2018;137:447–61.

    Article 

    Google Scholar
     

  • Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, et al. Multilocus Patterns of Nucleotide Diversity and divergence reveal positive selection at candidate genes related to Cold Hardiness in Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Genetics. 2009;183:289–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller T, Freund F, Wildhagen H, Schmid KJ. Targeted re-sequencing of five Douglas-fir provenances reveals population structure and putative target genes of positive selection. Tree Genet Genomes. 2015;11:816.

    Article 

    Google Scholar
     

  • Hess M, Wildhagen H, Junker LV, Ensminger I. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat. BMC Genomics. 2016;17:682.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George J, Schueler S, Grabner M, Karanitsch-Ackerl S, Mayer K, Stierschneider M, et al. Looking for the needle in a downsized haystack: whole-exome sequencing unravels genomic signals of climatic adaptation in Douglas-fir (Pseudotsuga menziesii). Ecol Evol. 2021;11(12):8238–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson TC, Stathos AM, Vanderpool DD, Finseth FR, Yuan Y, Fishman L. Ancient and recent introgression shape the evolutionary history of pollinator adaptation and speciation in a model monkeyflower radiation (Mimulus section Erythranthe). PLoS Genet. 2021;17:e1009095.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15:1179–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson EC, Thompson EA. A model-based method for identifying species hybrids using Multilocus Genetic Data. Genetics. 2002;160:1217–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochoa A, Storey JD. Estimating FST and kinship for arbitrary population structures. PLoS Genet. 2021;17:e1009241.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little EL. Atlas of United States trees. Washington, D.C: U.S. Dept. of Agriculture, Forest Service; 1971.


    Google Scholar
     

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham H. ggplot2. New York, NY: Springer New York; 2009.

  • Gruber B, Unmack PJ, Berry OF, Georges A. Dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour. 2018;18:691–9.

    Article 
    PubMed 

    Google Scholar
     

  • Foll M, Gaggiotti O. A genome-scan Method to identify selected loci appropriate for both Dominant and Codominant markers: a bayesian perspective. Genetics. 2008;180:977–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luu K, Bazin E, Blum MGB. Pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour. 2017;17:67–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49:W317–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Hamann A, Spittlehouse D, Carroll C. Locally downscaled and spatially customizable Climate Data for historical and future periods for North America. PLoS ONE. 2016;11:e0156720.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Günther T, Coop G. Robust identification of local adaptation from Allele Frequencies. Genetics. 2013;195:205–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass JM, Pinilla-Buitrago GE, Paz A, Johnson BA, Grisales Betancur V, Meenan SI et al. wallace 2: a shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions. Ecography. 2023;2023.

  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–59.

    Article 

    Google Scholar
     

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open source release of Maxent. Ecography. 2017;40:887–93.

    Article 

    Google Scholar
     

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–78.

    Article 

    Google Scholar
     

  • Hutchinson GE. Concluding remarks. Cold Spring Harb Symp Quant Biol. 1957;22:415–27.

    Article 

    Google Scholar
     

  • Schoener TW. The Anolis lizards of Bimini: resource partitioning in a Complex Fauna. Ecology. 1968;49:704–26.

    Article 

    Google Scholar
     

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17:43–57.

    Article 

    Google Scholar
     

  • Candido-Ribeiro R, Aitken SN. Weak local adaptation to drought in seedlings of a widespread conifer. New Phytol. 2024;241:2395–409.

    Article 
    PubMed 

    Google Scholar
     

  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB. Mapping of quantitative trait loci Controlling adaptive traits in Coastal Douglas Fir. III. Quantitative trait loci-by-environment interactions. Genetics. 2003;165:1489–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehfeldt GE. Growth and cold hardiness of intervarietal hybrids of douglas-fir. Theor Appl Genet. 1977;50:3–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y-S, Shih K-M, Chang C-T, Chung J-D, Hwang S-Y. Testing the Effect of Mountain ranges as a physical barrier to current Gene Flow and environmentally dependent adaptive divergence in Cunninghamia Konishii (Cupressaceae). Front Genet. 2019;10.

  • Gould PJ, Harrington CA, St. Clair JB. Incorporating genetic variation into a model of budburst phenology of coast Douglas-fir (Pseudotsuga menziesii var. menziesii). Can J for Res. 2011;41:139–50.

    Article 

    Google Scholar
     

  • Silen RR. Genetics of Douglas-fir. United States Forest Service Research Paper WO-35 1978.

  • Menon M, Bagley JC, Page GFM, Whipple AV, Schoettle AW, Still CJ, et al. Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Commun Biol. 2021;4:160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rieseberg LH, Widmer A, Arntz AM, Burke B. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B Biol Sci. 2003;358:1141–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song P, Wei L, Chen Z, Cai Z, Lu Q, Wang C, et al. m6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biol. 2023;24:103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, et al. The Arabidopsis thaliana RNA editing factor SLO2, which affects the Mitochondrial Electron Transport Chain, participates in multiple stress and hormone responses. Mol Plant. 2014;7:290–310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bak G, Lee E-J, Lee Y, Kato M, Segami S, Sze H, et al. Rapid Structural Changes and Acidification of Guard Cell vacuoles during Stomatal Closure Require Phosphatidylinositol 3,5-Bisphosphate. Plant Cell. 2013;25:2202–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamurthy P, Vishal B, Bhal A, Kumar PP. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. Physiol Plant. 2021;172:1673–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie L-J, Chen Q-F, Chen M-X, Yu L-J, Huang L, Chen L, et al. Unsaturation of very-long-chain Ceramides protects Plant from Hypoxia-Induced damages by modulating Ethylene Signaling in Arabidopsis. PLoS Genet. 2015;11:e1005143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pih KT, Kabilan V, Lim JH, Kang SG, Piao HL, Jin JB, et al. Characterization of two new channel protein genes in Arabidopsis. Mol Cells. 1999;9:84–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, et al. D6PK AGCVIII kinases are required for Auxin Transport and Phototropic Hypocotyl bending in Arabidopsis. Plant Cell. 2013;25:1674–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang C-Z, Yen C-N, Cronin K, Mitchell D, Britt AB. UV- and Gamma-Radiation sensitive mutants of Arabidopsis thaliana. Genetics. 1997;147:1401–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa T, Pan L, Kawai-Yamada M, Yu L-H, Yamamura S, Koyama T, et al. Functional analysis of Arabidopsis Ethylene-Responsive element binding protein conferring resistance to Bax and abiotic stress-Induced Plant Cell Death. Plant Physiol. 2005;138:1436–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehfeldt GE, Jaquish BC, López-Upton J, Sáenz-Romero C, St Clair JB, Leites LP, et al. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches. Ecol Manage. 2014;324:126–37.

    Article 

    Google Scholar
     

  • Campbell JL, Shinneman DJ. Potential influence of wildfire in modulating climate-induced forest redistribution in a central Rocky Mountain landscape. Ecol Process. 2017;6:7.

    Article 

    Google Scholar
     

  • Zhao Y, O’Neill GA, Wang T. Predicting fundamental climate niches of forest trees based on species occurrence data. Ecol Indic. 2023;148:110072.

    Article 

    Google Scholar
     

  • Corlett RT, Westcott DA. Will plant movements keep up with climate change? Trends Ecol Evol. 2013;28:482–8.

    Article 
    PubMed 

    Google Scholar
     

  • Périé C, de Blois S. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes. PeerJ. 2016;4:e2218.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsen PR, Saxon EC, Simmons BA, Ward M, Williams BA, Grantham HS, et al. Accelerated shifts in terrestrial life zones under rapid climate change. Glob Chang Biol. 2022;28:918–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link