Scientific Papers

The efficiency of detecting seabird behaviour from movement patterns: the effect of sampling frequency on inferring movement metrics in Procellariiformes | Movement Ecology


  • Wakefield ED, Phillips RA, Matthiopoulos J. Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser. 2009;391:165–82.

    Article 

    Google Scholar
     

  • Hindell MA, Reisinger RR, Ropert-Coudert Y, Hückstädt LA, Trathan PN, Bornemann H, et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nat Springer US. 2020;580:87–92.

    CAS 

    Google Scholar
     

  • Hentati-Sundberg J, Olin AB, Evans TJ, Isaksson N, Berglund PA, Olsson O. A mechanistic framework to inform the spatial management of conflicting fisheries and top predators. J Appl Ecol. 2021;58:125–34.

    Article 

    Google Scholar
     

  • Carneiro APB, Dias MP, Oppel S, Pearmain EJ, Clark BL, Wood AG, et al. Integrating immersion with GPS data improves behavioural classification for wandering albatrosses and shows scavenging behind fishing vessels mirrors natural foraging. Anim Conserv. 2022;25:627–37.

    Article 

    Google Scholar
     

  • Weimerskirch H. Are seabirds foraging for unpredictable resources? Deep Res Part II Top Stud Oceanogr. 2007;54:211–23.

    Article 

    Google Scholar
     

  • Reisinger R, Raymond B, Hindell MA, Bester MN, Crawford RJM, Davies D, et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers Distrib. 2018;24:535–50.

    Article 

    Google Scholar
     

  • Carpenter-Kling T, Reisinger RR, Orgeret F, Connan M, Stevens KL, Ryan PG, et al. Foraging in a dynamic environment: response of four sympatric sub-antarctic albatross species to interannual environmental variability. Ecol Evol. 2020;10:11277–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips RA, Croxall JP, Silk JRDD, Briggs DR. Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquat Conserv Mar Freshw Ecosyst. John Wiley & Sons, Ltd.; 2008;17:S6–21.

  • Weimerskirch H, Cherel Y, Delord K, Jaeger A, Patrick SC, Riotte-Lambert L. Lifetime foraging patterns of the wandering albatross: life on the move! J exp Mar Bio Ecol. Elsevier B V. 2014;450:68–78.


    Google Scholar
     

  • Weimerskirch H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J Anim Ecol. 1998;67:99–109.

    Article 

    Google Scholar
     

  • Einoder LD, Page B, Goldsworthy SD, De Little SC, Bradshaw CJA. Exploitation of distant Antarctic waters and close neritic waters by short-tailed shearwaters breeding in South Australia. Austral Ecol. 2011;36:461–75.

    Article 

    Google Scholar
     

  • Cleeland JB, Lea M-A, Hindell MA. Use of the Southern Ocean by breeding short-tailed shearwaters (Puffinus tenuirostris). J exp Mar Bio Ecol. Elsevier B V. 2014;450:109–17.


    Google Scholar
     

  • Schoombie S, Dilley BJ, Davies D, Ryan PG. The foraging range of great shearwaters (Ardenna gravis) breeding on Gough Island. Polar Biol. 2018;41:2451–8.

    Article 

    Google Scholar
     

  • Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, et al. Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int. 2012;22:1–34.

    Article 

    Google Scholar
     

  • Cooke SJ. Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endanger Species Res. 2008;4:165–85.

    Article 

    Google Scholar
     

  • Kooyman GL. Genesis and evolution of bio-logging devices: 1963–2002. Mem Natl Inst Polar Res Spec Issue. 2004;58:15–22.


    Google Scholar
     

  • Wilson RP, Vandenabeele SP. Technological innovation in archival tags used in seabird research. Mar Ecol Prog Ser. 2012;451:245–62.

    Article 

    Google Scholar
     

  • Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, et al. Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol. 2004;19:334–43.

    Article 
    PubMed 

    Google Scholar
     

  • Hooker SK, Whitehead H, Gowans S, Baird RW. Fluctuations in distribution and patterns of individual range use of northern bottlenose whales. Mar Ecol Prog Ser. 2002;225:287–97.

    Article 

    Google Scholar
     

  • Tremblay Y, Bertrand S, Henry RW, Kappes MA, Costa DP, Shaffer SA. Analytical approaches to investigating seabird-environment interactions: a review. Mar Ecol Prog Ser. 2009;391:153–63.

    Article 

    Google Scholar
     

  • Fritz HH, Said S, Weimerskirch H. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird. Proc R Soc Lond B. 2003;270:1143–8.

    Article 

    Google Scholar
     

  • Ryan PG, Petersen SL, Peters G, Grémillet D. GPS tracking a marine predator: the effects of precision, resolution and sampling rate on foraging tracks of African penguins. Mar Biol. 2004;145:215–23.

    Article 

    Google Scholar
     

  • Morris G, Conner LM. Assessment of accuracy, fix success rate, and use of estimated horizontal position error (EHPE) to filter inaccurate data collected by a common commercially available GPS logger. PLoS ONE. 2017;12:1–12.

    Article 

    Google Scholar
     

  • Forin-Wiart MA, Hubert P, Sirguey P, Poulle ML. Performance and accuracy of lightweight and low-cost GPS data loggers according to antenna positions, fix intervals, habitats and animal movements. PLoS ONE. 2015;10:1–21.

    Article 

    Google Scholar
     

  • Hebblewhite M, Haydon DT. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B Biol Sci. 2010;365:2303–12.

    Article 

    Google Scholar
     

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B Biol Sci. 2010;365:2163–76.

    Article 

    Google Scholar
     

  • Orben RA, O’Connor AJ, Suryan RM, Ozaki K, Sato F, Deguchi T. Ontogenetic changes in at-sea distributions of immature short-tailed albatrosses Phoebastria albatrus. Endanger Species Res. 2018;35:23–37.

    Article 

    Google Scholar
     

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008;23:87–94.

    Article 
    PubMed 

    Google Scholar
     

  • Edelhoff H, Signer J, Balkenhol N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov Ecol Mov Ecol; 2016;4.

  • Bennison A, Bearhop S, Bodey TW, Votier SC, Grecian WJ, Wakefield ED, et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol Evol. 2018;8:13–24.

    Article 
    PubMed 

    Google Scholar
     

  • Dean B, Freeman R, Kirk H, Leonard K, Phillips RA, Perrins CM, et al. Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model reveals the distribution of at-sea behaviour. J R Soc Interface. 2013;10:20120570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thiebault A, Tremblay Y. Splitting animal trajectories into fine-scale behaviorally consistent movement units: breaking points relate to external stimuli in a foraging seabird. Behav Ecol Sociobiol. 2013;67:1013–26.

    Article 

    Google Scholar
     

  • Auger-Méthé M, Field C, Albertsen CM, Derocher AE, Lewis MA, Jonsen ID, et al. State-space models’ dirty little secrets: even simple linear gaussian models can have estimation problems. Sci Rep Nat Publishing Group. 2016;6:1–10.


    Google Scholar
     

  • Fauchald P, Erikstad KE, Skarsfjord H. Scale-dependent predator-prey interactions: the hierarchical spatial distribution of seabirds and prey. Ecology. 2000;81:773–83.


    Google Scholar
     

  • Spear LB, Ainley DG. Flight speed of seabirds in relation to wind speed and direction. Ibis (Lond 1859). 1997;139:234–51.

    Article 

    Google Scholar
     

  • Tarroux A, Weimerskirch H, Wang SH, Bromwich DH, Cherel Y, Kato A, et al. Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: do you catch the drift? Anim Behav. 2016;113:99–112.

    Article 

    Google Scholar
     

  • Johnson DD, Ganskopp DC. GPS collar sampling frequency: effects on measures of resource use. Rangel Ecol Manag Elsevier. 2008;61:226–31.

    Article 

    Google Scholar
     

  • Van de Ropert-Coudert Y, Reisinger RR, Bornemann H, Charrassin J-B, Costa DP, et al. The retrospective analysis of Antarctic tracking data project. Sci Data. 2020;7:1–11.

    Article 

    Google Scholar
     

  • Birdlife International. Tracking ocean wanderers: the global distribution of albatrosses and petrels. Results from Glob. Procellariiform Track. Work. 1–5 Sept. 2003, Gordon’s Bay, South Africa. Cambridge, UK: BirdLife International; 2004.


    Google Scholar
     

  • Dias MP, Oppel S, Bond AL, Carneiro APB, Cuthbert RJ, González-Solís J, et al. Using globally threatened pelagic birds to identify priority sites for marine conservation in the South Atlantic Ocean. Biol Conserv. 2017;211:76–84.

    Article 

    Google Scholar
     

  • Carneiro APBB, Pearmain EJ, Oppel S, Clay TA, Phillips RA, Bonnet-Lebrun AS, et al. A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology. J Appl Ecol. 2020;57:514–25.

    Article 

    Google Scholar
     

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost C-A. Does prey capture induce area-restricted search? A fine‐scale study using GPS in a marine predator, the Wandering Albatross. Am Nat. 2007;170:734–43.

    Article 
    PubMed 

    Google Scholar
     

  • Nevitt GA, Losekoot M, Weimerskirch H. Evidence for olfactory search in wandering albatross, Diomedea exulans. Proc Natl Acad Sci USA. 2008;105:4576–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres LG, Thompson DR, Bearhop S, Votier S, Taylor GA, Sagar PM, et al. White-capped albatrosses alter fine-scale foraging behavior patterns when associated with fishing vessels. Mar Ecol Prog Ser. 2011;428:289–301.

    Article 

    Google Scholar
     

  • Clay TA, Joo R, Weimerskirch H, Phillips RA, den Ouden O, Basille M, et al. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird. J Anim Ecol. 2020;89:1811–23.

    Article 
    PubMed 

    Google Scholar
     

  • Pereira JM, Paiva VH, Phillips RA, Xavier JC. The devil is in the detail: small-scale sexual segregation despite large-scale spatial overlap in the wandering albatross. Mar Biol. 2018;165:55.

    Article 

    Google Scholar
     

  • Wakefield ED, Phillips RA, Jason M, Akira F, Hiroyoshi H, Marshall GJ, et al. Wind field and sex constrain the flight speeds of central-place foraging albatrosses. Ecol Monogr. 2009;79:663–79.

    Article 

    Google Scholar
     

  • Noonan MJ, Fleming CH, Akre TS, Drescher-Lehman J, Gurarie E, Harrison AL, et al. Scale-insensitive estimation of speed and distance traveled from animal tracking data. Mov Ecol Mov Ecol. 2019;7:1–15.


    Google Scholar
     

  • Klarevas-Irby JA, Farine DR. Diel patterns of movement reveal temporal strategies during dispersal. Anim Behav Authors. 2024;207:119–29.

    Article 

    Google Scholar
     

  • Halsey LG, Green JA, Wilson R, Frappell PB. Accelerometry to estimate energy expenditure during activity: best practice with data loggers. Physiol Biochem Zool. 2009;82:396–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Postlethwaite CM, Dennis TE. Effects of temporal resolution on an inferential model of animal movement. PLoS ONE. 2013;8:e57640.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He P, Klarevas-Irby JA, Papageorgiou D, Christensen C, Strauss ED, Farine DR. A guide to sampling design for GPS-based studies of animal societies. Methods Ecol Evol. 2023;14:1887–905.

    Article 

    Google Scholar
     

  • Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KCJ. A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol. 2013;154:571–80.

    Article 

    Google Scholar
     

  • Dewhirst OP, Evans HK, Roskilly K, Harvey RJ, Hubel TY, Wilson AM. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol Evol. 2016;6:6210–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips RA, Xavier JC, Croxall JP. Effects of satellite transmitters on albatrosses and petrels. Auk. 2003;120:1082–90.

    Article 

    Google Scholar
     

  • Cagnacci F, Boitani L, Powell RA, Boyce MS. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc B Biol Sci. 2010;365:2157–62.

    Article 

    Google Scholar
     

  • Johnson LR, Boersch-Supan PH, Phillips RA, Ryan SJ. Changing measurements or changing movements? Sampling scale and movement model identifiability across generations of biologging technology. Ecol Evol. 2017;7:9257–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell LJ, White PCL, Arnold KE. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PLoS ONE. 2019;14:e0219357.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranacher P, Brunauer R, Van der Trutschnig W, Reich S. Why GPS makes distances bigger than they are. Int J Geogr Inf Sci. 2016;30:316–33.

    Article 
    PubMed 

    Google Scholar
     

  • Ranacher P, Van Der Brunauer R, Reich S. What is an appropriate temporal sampling rate to record floating car data with a GPS? ISPRS Int J Geo-Information. 2016;5:1–17.

    Article 

    Google Scholar
     

  • Tickell WLN. Albatrosses. Sussex: Pica; 2000.


    Google Scholar
     

  • Biol M, Vandenabeele SP, Shepard EL, Grogan A, Wilson RP. When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints. Mar Biol. 2012;159:1–14.

    Article 

    Google Scholar
     

  • Bruton AM, Glennie CL, Schwarz KP. Differentiation for High-Precision GPS velocity and acceleration determination. GPS Solut. 1999;2:7–21.

    Article 

    Google Scholar
     

  • Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol. 2013;1:1–13.

    Article 

    Google Scholar
     

  • Calenge C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell. 2006;197:516–9.

    Article 

    Google Scholar
     

  • Tremblay Y, Shaffer SA, Fowler SL, Kuhn CE, McDonald BI, Weise MJ, et al. Interpolation of animal tracking data in a fluid environment. J Exp Biol. 2006;209:128–40.

    Article 
    PubMed 

    Google Scholar
     

  • Visser I, Speekenbrink M. depmixS4: an R package for hidden markov models. J Stat Softw. 2010;36:1–21.

    Article 

    Google Scholar
     

  • Kie JG. A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses. Anim Biotelemetry. 2013;1:13.

    Article 

    Google Scholar
     

  • Silva I, Fleming CH, Noonan MJ, Alston J, Folta C, Fagan WF, et al. Autocorrelation-informed home range estimation: a review and practical guide. Methods Ecol Evol. 2022;13:534–44.

    Article 

    Google Scholar
     

  • Franklin KA, Norris K, Gill JA, Ratcliffe N, Bonnet-Lebrun AS, Butler SJ, et al. Individual consistency in migration strategies of a tropical seabird, the Round Island Petrel. Mov Ecol BioMed Cent. 2022;10:1–14.


    Google Scholar
     

  • True MC, Gorman KM, Taylor H, Reynolds RJ, Ford WM. Fall migration, oceanic movement, and site residency patterns of eastern red bats (Lasiurus borealis) on the Mid-atlantic Coast. Mov Ecol BioMed Cent. 2023;11:1–16.


    Google Scholar
     

  • R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.


    Google Scholar
     

  • Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, Kochel TJ, et al. Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Int J Health Geogr. 2009;8:1–11.

    Article 

    Google Scholar
     

  • Townshend AD, Worringham CJ, Stewart IB. Assessment of speed and position during human locomotion using nondifferential GPS. Med Sci Sports Exerc. 2008;40:124–32.

    Article 
    PubMed 

    Google Scholar
     

  • Sachs G. Minimum shear wind strength required for dynamic soaring of albatrosses. Ibis (Lond 1859). 2005;147:1–10.

    Article 

    Google Scholar
     

  • Pennycuick CJ. The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Philos Trans R Soc B Biol Sci. 1982;300:75–106.


    Google Scholar
     

  • Richardson PL. How do albatrosses fly around the world without flapping their wings? Prog Oceanogr. Volume 88. Elsevier Ltd; 2011. pp. 46–58.

  • Sherub S, Fiedler W, Duriez O, Wikelski M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J Comp Physiol A. Springer Berlin Heidelberg; 2017;203:531–42.

  • Hurford A. GPS measurement error gives rise to spurious 180° turning angles and strong directional biases in animal movement data. PLoS ONE. 2009;4:e5632.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachs G, Traugott J, Nesterova AP, Dell’Omo G, Kümmeth F, Heidrich W, et al. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses. PLoS ONE. 2012;7:e41449.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachs G. In-flight measurement of upwind dynamic soaring in albatrosses. Prog Oceanogr Elsevier Ltd. 2016;142:47–57.

    Article 

    Google Scholar
     

  • Wensveen PJ, Thomas L, Miller PJO. A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales. Mov Ecol. 2015;3:31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoda K. Advances in bio-logging techniques and their application to study navigation in wild seabirds. Adv Robot. 2019;33:108–17.

    Article 

    Google Scholar
     

  • Ronconi RA, Schoombie S, Westgate AJ, Wong SNP, Koopman HN, Ryan PG. Effects of age, sex, colony and breeding phase on marine space use by Great shearwaters Ardenna gravis in the South Atlantic. Mar Biol. 2018;165:58.

    Article 

    Google Scholar
     

  • Michelot T, Langrock R, Patterson TA. moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol. 2016;7:1308–15.

    Article 

    Google Scholar
     

  • McClintock BT, Michelot T, momentuHMM:. R package for generalized hidden Markov models of animal movement. Methods Ecol Evol. 2018;9:1518–30.

    Article 

    Google Scholar
     

  • Calabrese JM, Fleming CH, Gurarie E. Ctmm: an R Package for analyzing animal Relocation Data as a continuous-time stochastic process. Methods Ecol Evol. 2016;7:1124–32.

    Article 

    Google Scholar
     

  • Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Liebsch N, Albareda DA, et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res. 2008;10:47–60.

    Article 

    Google Scholar
     

  • Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, et al. Optimizing the use of biologgers for movement ecology research. J Anim Ecol. 2020;89:186–206.

    Article 
    PubMed 

    Google Scholar
     

  • Tremblay Y, Thiebault A, Mullers R, Pistorius P. Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS ONE. 2014;9:e88424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bidder OR, Soresina M, Shepard ELC, Halsey LG, Quintana F, Gómez-Laich A, et al. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems. Zool Elsevier GmbH. 2012;115:58–64.


    Google Scholar
     

  • Gupte PR, Beardsworth CE, Spiegel O, Lourie E, Toledo S, Nathan R, et al. A guide to pre-processing high-throughput animal tracking data. J Anim Ecol. 2022;91:287–307.

    Article 
    PubMed 

    Google Scholar
     



  • Source link