Scientific Papers

The reliability and validity of rapid transcranial magnetic stimulation mapping for muscles under active contraction | BMC Neuroscience


  • Schieber MH. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol. 2001;86(5):2125–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson S, Thickbroom G, Mastaglia F. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects: the representation of two intrinsic hand muscles. J Neurol Sci. 1993;118(2):134–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lüdemann-Podubecká J, Nowak DA. Mapping cortical hand motor representation using TMS: a method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Neurosci Biobehavioral Reviews. 2016;69:239–51.

    Article 

    Google Scholar
     

  • Kleim JA, Kleim ED, Cramer SC. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nat Protoc. 2007;2(7):1675–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu S, Baad-Hansen L, Zhang Z, Svensson P. One hour jaw muscle training does not evoke plasticity in the corticomotor control of the masseter muscle. Arch Oral Biol. 2013;58(10):1483–90.

    Article 
    PubMed 

    Google Scholar
     

  • Ngomo S, Leonard G, Moffet H, Mercier C. Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods. 2012;205(1):65–71.

    Article 
    PubMed 

    Google Scholar
     

  • Burns E, Chipchase LS, Schabrun SM. Altered function of intracortical networks in chronic lateral epicondylalgia. Eur J Pain. 2016;20(7):1166–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang WJ, Buscemi V, Liston MB, McAuley JH, Hodges PW, Schabrun SM. Sensorimotor cortical activity in Acute Low Back Pain: a cross-sectional study. J Pain. 2019;20(7):819–29.

    Article 
    PubMed 

    Google Scholar
     

  • Chowdhury NS, Chang W-J, Millard SK, Skippen P, Bilska K, Seminowicz DA, Schabrun SM. The Effect of Acute and Sustained Pain on Corticomotor excitability: a systematic review and Meta-analysis of group-and individual-level data. J Pain. 2022;23(10):1680–96.

    Article 
    PubMed 

    Google Scholar
     

  • Tsao H, Danneels LA, Hodges PW. ISSLS Prize winner: smudging the motor brain in young adults with recurrent low back pain. Spine (Phila Pa 1976). 2011;36(21):1721–7.

    Article 
    PubMed 

    Google Scholar
     

  • McMillan AS, Watson C, Walshaw D. Transcranial magnetic-stimulation mapping of the cortical topography of the human masseter muscle. Arch Oral Biol. 1998;43(12):925–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wassermann EM, McShane LM, Hallett M, Cohen LG. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol. 1992;85(1):1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cavaleri R, Schabrun SM, Chipchase LS. The reliability and validity of rapid transcranial magnetic stimulation mapping. Brain Stimul. 2018;11(6):1291–5.

    Article 
    PubMed 

    Google Scholar
     

  • Van De Ruit M, Perenboom MJ, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimul. 2015;8(2):231–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cavaleri R, Chipchase LS, Massé-Alarie H, Schabrun SM, Shraim MA, Hodges PW. Corticomotor reorganization during short‐term visuomotor training in the lower back: a randomized controlled study. Brain Behav. 2020;10(8):e01702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavaleri R, Chipchase LS, Summers SJ, Schabrun SM. Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study. Pain. 2019;160(11):2624–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin F, Bruijn SM, Daffertshofer A. Accounting for stimulations that do not elicit motor-evoked potentials when mapping cortical representations of multiple muscles. Front Hum Neurosci 2022;16.

  • Jonker ZD, van der Vliet R, Hauwert CM, Gaiser C, Tulen JH, van der Geest JN, Donchin O, Ribbers GM, Frens MA, Selles RW. TMS motor mapping: comparing the absolute reliability of digital reconstruction methods to the golden standard. Brain Stimul. 2019;12(2):309–13.

    Article 
    PubMed 

    Google Scholar
     

  • Te M, Baptista AF, Chipchase LS, Schabrun SM. Primary motor cortex organization is altered in persistent patellofemoral pain. Pain Med. 2017;18(11):2224–34.

    Article 
    PubMed 

    Google Scholar
     

  • Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods. 2023;385:109766.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert guidelines. Clin Neurophysiol. 2021;132(1):269–306.

    Article 
    PubMed 

    Google Scholar
     

  • Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang W-J, Andary T, Cavaleri R. The effect of theta burst stimulation over the primary motor cortex on experimental hamstring pain: a randomized, controlled study. J Pain. 2023;24(4):593–604.

    Article 
    PubMed 

    Google Scholar
     

  • Stensdotter AK, Hodges PW, Mellor R, Sundelin G, Hager-Ross C. Quadriceps activation in closed and in open kinetic chain exercise. Med Sci Sports Exerc. 2003;35(12):2043–7.

    Article 
    PubMed 

    Google Scholar
     

  • Coqueiro KRR, Bevilaqua-Grossi D, Bérzin F, Soares AB, Candolo C, Monteiro-Pedro V. Analysis on the activation of the VMO and VLL muscles during semisquat exercises with and without hip adduction in individuals with patellofemoral pain syndrome. J Electromyogr Kinesiol. 2005;15(6):596–603.

    Article 
    PubMed 

    Google Scholar
     

  • Temesi J, Gruet M, Rupp T, Verges S, Millet GY. Resting and active motor thresholds versus stimulus–response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. J Neuroeng Rehabil. 2014;11(1):1–13.

    Article 

    Google Scholar
     

  • Awiszus F, Borckardt J. TMS motor threshold assessment tool (MTAT 2.0). USA: Brain Stimulation Laboratory, Medical University of South Carolina; 2011.


    Google Scholar
     

  • Macaluso GM, Pavesi G, Bonanini M, Mancia D, Gennari PU. Motor-evoked potentials in masseter muscle by electrical and magnetic stimulation in intact alert man. Arch Oral Biol. 1990;35(8):623–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavesi G, Macaluso GM, Tinchelli S, Medici D, Gemignani F, Mancia D. Magnetic motor evoked potentials (MEPs) in masseter muscles. Electromyogr Clin Neurophysiol. 1991;31(5):303–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Davies JL. Using transcranial magnetic stimulation to map the cortical representation of lower-limb muscles. Clin Neurophysiol Pract. 2020;5:87–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temesi J, Ly SN, Millet GY. Reliability of single-and paired-pulse transcranial magnetic stimulation for the assessment of knee extensor muscle function. J Neurol Sci. 2017;375:442–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cavaleri R. Exploring early corticomotor reorganisation. 2022.

  • Guggisberg AG, Dubach P, Hess CW, Wüthrich C, Mathis J. Motor evoked potentials from masseter muscle induced by transcranial magnetic stimulation of the pyramidal tract: the importance of coil orientation. Clin Neurophysiol. 2001;112(12):2312–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kesar TM, Stinear JW, Wolf SL. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: challenges and opportunities. Restor Neurol Neurosci. 2018;36(3):333–48.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa YM, Exposto FG, Kothari M, Castrillon EE, Conti PCR, Bonjardim LR, Svensson P. Masseter corticomotor excitability is decreased after intramuscular administration of nerve growth factor. Eur J Pain 2019;0(ja).

  • Schwenkreis P, Pleger B, Cornelius B, Weyen U, Dertwinkel R, Zenz M, Malin J-P, Tegenthoff M. Reorganization in the ipsilateral motor cortex of patients with lower limb amputation. Neurosci Lett. 2003;349(3):187–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury NS, Chiang AK, Millard SK, Skippen P, Chang W-J, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. Elife. 2023;12:RP88567.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsao H, Tucker KJ, Hodges PW. Changes in excitability of corticomotor inputs to the trunk muscles during experimentally-induced acute low back pain. Neuroscience. 2011;181:127–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uy J, Ridding M, Miles T. Stability of maps of Human Motor Cortex Made with Transcranial magnetic stimulation. Brain Topogr. 2002;14(4):293–7.

    Article 
    PubMed 

    Google Scholar
     

  • Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to Sports Medicine. Sports Med. 1998;26(4):217–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damron LA, Dearth DJ, Hoffman RL, Clark BC. Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. J Neurosci Methods. 2008;173(1):121–8.

    Article 
    PubMed 

    Google Scholar
     

  • Martin Bland J, Altman D, Statistical methods for assessing, agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–10.

    Article 

    Google Scholar
     

  • Schambra H, Ogden RT, Martínez-Hernández I, Lin X, Chang YB, Rahman A, Edwards D, Krakauer J. The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Front Cell Neurosci 2015;9(335).

  • Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40.

    PubMed 

    Google Scholar
     

  • Core Team R. R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing; 2013.


    Google Scholar
     

  • Beaulieu LD, Flamand VH, Masse-Alarie H, Schneider C. Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: a systematic review. Brain Stimul. 2017;10(2):196–213.

    Article 
    PubMed 

    Google Scholar
     

  • Matamala JM, Howells J, Dharmadasa T, Trinh T, Ma Y, Lera L, Vucic S, Burke D, Kiernan MC. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett. 2018;674:18–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lexell JE, Downham DY. How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehabil. 2005;84(9):719–23.

    Article 
    PubMed 

    Google Scholar
     

  • Beckerman H, Roebroeck ME, Lankhorst GJ, Becher JG, Bezemer PD, Verbeek ALM. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59(10):1033–9.

    Article 
    PubMed 

    Google Scholar
     

  • Schuck P, Zwingmann C. The ‘smallest real difference’ as a measure of sensitivity to change: a critical analysis. Int J Rehabil Res. 2003;26(2):85–91.

    PubMed 

    Google Scholar
     

  • Trevethan R. Intraclass correlation coefficients: clearing the air, extending some cautions, and making some requests. Health Serv Outcomes Res Method. 2017;17(2):127–43.

    Article 

    Google Scholar
     

  • van Doorn J, van den Bergh D, Böhm U, Dablander F, Derks K, Draws T, Etz A, Evans NJ, Gronau QF, Haaf JM. The JASP guidelines for conducting and reporting a bayesian analysis. Psychon Bull Rev. 2021;28:813–26.

    Article 
    PubMed 

    Google Scholar
     

  • Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37(2):75–82.

    Article 
    PubMed 

    Google Scholar
     

  • Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp. 2021;42(8):2508–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terwee CB, Bot SD, Boer MR, Windt DA, Knol DL, Dekker J. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 2007;60.

  • Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and reliability: a structured review. Front NeuroSci 2021;15.

  • Ward S, Bryant AL, Pietrosimone B, Bennell KL, Clark R, Pearce AJ. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere. J Electromyogr Kinesiol. 2016;28:46–52.

    Article 
    PubMed 

    Google Scholar
     

  • Chang W-J, Bennell KL, Hodges PW, Hinman RS, Liston MB, Schabrun SM. Combined exercise and transcranial direct current stimulation intervention for knee osteoarthritis: protocol for a pilot randomised controlled trial. BMJ open. 2015;5(8):e008482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahl CK, Giuffre A, Wrightson JG, Kirton A, Condliffe EG, MacMaster FP, Zewdie E. Active versus resting neuro-navigated robotic transcranial magnetic stimulation motor mapping. Physiological Rep. 2022;10(12):e15346.

    Article 

    Google Scholar
     

  • Gelman A, Tuerlinckx F. Type S error rates for classical and bayesian single and multiple comparison procedures. Comput Stat. 2000;15(3):373–90.

    Article 

    Google Scholar
     

  • Dziak JJ, Dierker LC, Abar B. The interpretation of statistical power after the data have been gathered. Curr Psychol. 2020;39:870–7.

    Article 
    PubMed 

    Google Scholar
     

  • Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter L, Neumann G, Oung S, Schweikard A, Trillenberg P. Optimal Coil Orientation for Transcranial magnetic stimulation. PLoS ONE. 2013;8(4):e60358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terao Y, Ugawa Y, Sakai K, Uesaka Y, Kohara N, Kanazawa I. Transcranial stimulation of the leg area of the motor cortex in humans. Acta Neurol Scand. 1994;89(5):378–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link