Scientific Papers

Source leaves are regulated by sink strengths through non-coding RNAs and alternative polyadenylation in cucumber (Cucumis sativus L.) | BMC Plant Biology


  • Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang BR, et al. Feature review addressing research bottlenecks to crop productivity. Trends Plant Sci. 2021;26(6):607–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith MR, Rao IM, Merchant A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front Plant Sci. 2018; 9.

  • Chang TG, Zhu XG, Raines C. Source-sink interaction: a century old concept under the light of modern molecular systems biology. J Exp Bot. 2017;68(16):4417–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Pang YL, Chen K, Zhai LY, Shen CC, Wang S, Xu JL. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. Crop J. 2020;8(1):119–31.

    Article 

    Google Scholar
     

  • Xiao-li WU, Miao L, Chao-su LI, Mchugh AD, Ming L, Tao X, Yu-bin L. Yong-lu T. source-sink relations and responses to sink-source manipulations during grain filling in wheat. J Integr Agr. 2022;21(6):1593–605.

    Article 

    Google Scholar
     

  • Azarakhsh MR, Bagherieh-Najjar MB, Sadeghipour HR, Raeisi S. Improved grain yield by phytohormones-driven suppression of pod abscission and revitalization of source-sink relationships in soybean. Int J Plant Prod. 2022;16(3):467–81.

    Article 

    Google Scholar
     

  • Singh J, Das S, Gupta KJ, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. Plant Biotechnol J. 2023;21(8):1528–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu SM, Lo SF, Ho THD. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015;20(12):844–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ariel F, Romero-Barrios N, Jegu T, Benhamed M, Crespi M. Battles and hijacks: noncoding transcription in plants. Trends Plant Sci. 2015;20(6):362–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Fang Y, Chen L, Wang J, Chen XW. Role of non-coding RNAs in plant immunity. Plant Commun. 2021; 2(3).

  • Delgado-Silva YB, Tarazona D, Serna F, Juscamayta E, Chavez-Galarza JC, Farfan-Vignolo ER, Delgado G, Flores A, Solano G, Gutierrez DL. Draft genome sequence of bacillus thuringiensis strain UNMSM10RA, isolated from potato crop soil in Peru. Microbiol Resour Ann. 2020; 9(2).

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA. Language? Cell. 2011;146(3):353–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song XW, Li Y, Cao XF, Qi YJ. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. 2019;70:489–525.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai HB, Zhang WY, Hua B, Zhu ZH, Zhang JJ, Zhang ZP, Miao MM. Cucumber STACHYOSE SYNTHASE is regulated by its cis-antisense RNA asCsSTS to balance source-sink carbon partitioning. Plant Cell. 2023;35(1):435–52.

    Article 
    PubMed 

    Google Scholar
     

  • Hu YF, Li YP, Weng JF, Liu HM, Yu GW, Liu YH, Xiao QL, Huang HN, Wang YB, Wei B, et al. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation. Plant J. 2021;105(1):108–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh A, Roy S, Singh S, Das SS, Gautam V, Yadav S, Kumar A, Singh A, Samantha S, Sarkar AK. Phytohormonal crosstalk modulates the expression of miR166/165s, target class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep. 2017;7(1):3408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav A, Kumar S, Verma R, Lata C, Sanyal I, Rai SP. microRNA 166: an evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family. Physiol Mol Biol Plants. 2021;27(11):2471–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ci D, Tian M, Song YP, Du QZ, Quan MY, Xuan AR, Yu JY, Yuan ZX, Zhang DQ. Indole-3-acetic acid has long-term effects on long non-coding RNA gene methylation and growth in Populus tomentosa. Mol Genet Genomics. 2019;294(6):1511–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyu ZR, Zhang GY, Song YT, Diao SF, He CY, Zhang JG. Transcriptome and DNA methylome provide insights into the molecular regulation of drought stress in sea buckthorn. Genomics 2022; 114(3).

  • Meng XW, Zhang PJ, Chen Q, Wang JJ, Chen M. Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics 2018; 19.

  • Shi FY, Xu HZ, Liu CH, Tan C, Ren J, Ye XL, Feng H, Liu ZY. Whole-transcriptome sequencing reveals a vernalization-related ceRNA regulatory network in Chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics 2021; 22(1).

  • Xu P, Li H, Wang XH, Zhao G, Lu XF, Dai SJ, Cui XY, Yuan M, Liu ZN. Integrated analysis of the lncRNA/circRNA-miRNA-mRNA expression profiles reveals novel insights into potential mechanisms in response to root-knot nematodes in peanut. BMC Genomics 2022; 23(1).

  • Chang HY. Genome regulation by long noncoding RNA genes. Cancer Res. 2020; 80(4).

  • Tian B, Hu J, Zhang HB, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 2005;33(1):201–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu XH, Liu M, Downie B, Liang C, Ji GL, Li QQ, Hunt AG. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. P Natl Acad Sci. 2011;108(30):12533–8.

    Article 
    CAS 

    Google Scholar
     

  • de Lorenzo L, Sorenson R, Bailey-Serres J, Hunt AG. Noncanonical alternative polyadenylation contributes to gene regulation in response to hypoxia. Plant Cell. 2017;29(6):1262–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun HX, Li Y, Niu QW, Chua NH. Dehydration stress extends mRNA 3 ‘ untranslated regions with noncoding RNA functions in Arabidopsis. Genome Res. 2017;27(8):1427–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tellez-Robledo B, Manzano C, Saez A, Navarro-Neila S, Silva-Navas J, de Lorenzo L, Gonzalez-Garcia MP, Toribio R, Hunt AG, Baigorri R, et al. The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses. Plant J. 2019;99(6):1203–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang JJ, Gu H, Dai HB, Zhang ZP, Miao MM. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber. J Plant Physiol, 2020; 245.

  • Mandal NK, Kumari K, Kundu A, Arora A, Bhowmick PK, Iquebal MA, Jaiswal S, Behera TK, Munshi AD, Dey SS. Cross-talk between the cytokinin, auxin, and gibberellin regulatory networks in determining parthenocarpy in cucumber. Front Genet. 2022; 13.

  • Lu JG, Sui XL, Ma S, Li X, Liu H, Zhang ZX. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol Biol. 2017;95(1–2):1–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabu X, Li S, Cai Z, Ge T, Hai M. The effect of potassium on photosynthetic acclimation in cucumber during CO2 enrichment. Photosynthetica. 2019;57(2):640–5.

    Article 
    CAS 

    Google Scholar
     

  • Dai JF, Liu SS, Zhang WR, Xu R, Luo WH, Zhang SF, Yin XY, Han L, Chen WP. Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouses. Sci Hortic-Amsterdam. 2011;130(3):551–61.

    Article 
    CAS 

    Google Scholar
     

  • Dong JL, Li X, Duan ZQ. Biomass allocation and organs growth of cucumber (Cucumis sativus L.) under elevated CO2 and different N supply. Arch Agron Soil Sci. 2016;62(2):277–88.

    Article 
    CAS 

    Google Scholar
     

  • Gavito ME, Jakobsen I, Mikkelsen TN, Mora F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019;223(2):896–907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naliwajski MR, Sklodowska M. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. Peerj 2018; 6.

  • Hu XH, Qu F, Jiang JJ, Xu JW, Liu T. Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags. Plant Soil Environ. 2019;65(6):328–35.

    Article 

    Google Scholar
     

  • Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei LP, Gao G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Park HJ, Dasari S, Wang SQ, Kocher JP, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013; 41(6).

  • Zhang T, Liang Q, Li C, Fu S, Kundu JK, Zhou X, Wu J. Transcriptome analysis of rice reveals the lncRNA-mRNA regulatory network in response to rice black-streaked dwarf virus infection. Viruses 2020; 12(9).

  • Li JW, Ma W, Zeng P, Wang JY, Geng B, Yang JC, Cui QH. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2015;16(5):806–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffiths-Jones S. miRBase: microRNA sequences and annotation. Curr Protoc Bioinf. 2010;Chap 12:121911–121910.


    Google Scholar
     

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52.

    Article 
    PubMed 

    Google Scholar
     

  • Varet H, Brillet-Gueguen L, Coppee JY, Dillies MA, SARTools:. A DESeq2-and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE 2016; 11(6).

  • Lavorgna G, Guffanti A, Borsani G, Ballabio A, Boncinelli E. TargetFinder: searching annotated sequence databases for target genes of transcription factors. Bioinformatics. 1999;15(2):172–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Landmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–U121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Li HB, Huang W, Xu YC, Zhou Q, Wang SH, Ruan J, Huang SW, Zhang Z. A chromosome-scale genome assembly of cucumber (Cucumis sativus L). Gigascience 2019; 8(6).

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008; 2008:619832.

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40:W22–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He XY, Guo SR, Wang Y, Wang LW, Shu S, Sun J. Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L). Physiol Plant. 2020;168(3):736–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das S, Ghosal S, Sen R, Chakrabarti J. InCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS ONE 2014; 9(6).

  • Shu X, Dong ZJ, Zhang MJ, Shu SY. Integrated analysis identifying long non-coding RNAs (lncRNAs) for competing endogenous RNAs (ceRNAs) network-regulated palatal shelf fusion in the development of mouse cleft palate. Ann Transl Med. 2019; 7(23).

  • Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019; 20(1).

  • Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy AS. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun. 2016;7:11706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011;27(12):1653–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong JW, Zhang ZL, Huang PL, Chen NY, Xue KX, Tian ZY, Yang YH. Growth, physiological, and photosynthetic responses of xanthoceras sorbifolium bunge seedlings under various degrees of salinity. Front Plant Sci. 2021; 12.

  • Zhang YY, Tian JP, Cui J, Hong YH, Luan YS. Effects of different NH4+/NO3- ratios on the photosynthetic and physiology responses of blueberry (Vaccinium spp.) seedlings growth. J Plant Nutr. 2021;44(6):854–64.

    Article 
    CAS 

    Google Scholar
     

  • Miao MM, Xu XF, Chen XH, Xue LB, Cao BS. Cucumber carbohydrate metabolism and translocation under chilling night temperature. J Plant Physiol. 2007;164(5):621–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai ZM. Activities of enzymes involved in starch synthesis in wheat grains differing in starch content. Russ J Plant Physl+. 2010;57(1):74–8.

    Article 
    CAS 

    Google Scholar
     

  • Wu Y, Shen YB. Dormancy in Tilia miqueliana is attributable to permeability barriers and mechanical constraints in the endosperm and seed coat. Braz J Bot. 2021;44(3):725–40.

    Article 

    Google Scholar
     

  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A. AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the golgi apparatus capable of transporting UDP-galactose. Planta. 2005;222(3):521–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellor SB, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Moller BL, Jensen PE. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis. Acs Chem Biol. 2016;11(7):1862–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos-Merino M, Torrado A, Davis GA, Rottig A, Bibby TS, Kramer DM, Ducat DC. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. P Natl Acad Sci. 2021; 118(11).

  • Xiao M, Li J, Li W, Wang Y, Wu FZ, Xi YP, Zhang L, Ding C, Luo HB, Li Y, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. Rna Biol. 2017;14(10):1326–34.

    Article 
    PubMed 

    Google Scholar
     

  • Wei HB, Bausewein A, Greiner S, Dauchot N, Harms K, Rausch T. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. New Phytol. 2017;215(1):281–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi SJ, An LL, Mao JJ, Aluko OO, Ullah Z, Xu FZ, Liu GS, Liu HB, Wang Q. The CBL-interacting protein kinase NtCIPK23 positively regulates seed germination and early seedling development in tobacco (Nicotiana tabacum L). Plants-Basel 2021; 10(2).

  • Singh A, Yadav AK, Kaur K, Sanyal SK, Jha SK, Fernandes JL, Sharma P, Tokas I, Pandey A, Luan S, et al. A protein phosphatase 2 C, AP2C1, interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis. J Exp Bot. 2018;69(16):4003–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XQ, Du DL. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals. Bmc Evol Biol. 2014; 14.

  • Zhao ZX, Wu XH, Ji GL, Liang C, Li QQ. Genome-wide comparative analyses of polyadenylation signals in eukaryotes suggest a possible origin of the AAUAAA signal. Int J Mol Sci 2019; 20(4).

  • He XF, Wang XM, Chen BL, Ma ZY, Huang Z, Shen X, Chai ZP. The influence of nitrogen (N) input on the sink-source relationship of ‘Korla fragrant’ pear (Pyrus Brestschneideri Rehd.Cv). Erwerbs-Obstbau. 2023;65(1):35–45.

    Article 
    CAS 

    Google Scholar
     

  • Goldschmidt EE, Huber SC. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 1992;99(4):1443–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MARCELIS LFM. Effects of sink demand on photosynthesis in Cucumber. J Exp Bot. 1991;42(11):1387–92.

    Article 

    Google Scholar
     

  • Guan Z, Wang W, Yu X, Lin W, Miao Y. Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. Int J Mol Sci 2018; 19(8).

  • Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. Arabidopsis CBL-interacting protein kinases regulate carbon/nitrogen-nutrient response by phosphorylating ubiquitin ligase ATL31. Mol Plant. 2017;10(4):605–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin YP, Shen YY, Shiu YB, Charng YY, Grimm B. Chlorophyll dephytylase 1 and chlorophyll synthase. A chlorophyll salvage pathway for the turnover of photosystems I and II. Plant J. 2022;111(4):979–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monne M, Miniero D, Daddabbo L, Palmieri L, Porcelli V, Palmieri F. Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids. 2015;47(9):1763–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Chang YM, Zhao K, Dong Q, Yang J, Maize. RNA 3’-terminal phosphate cyclase-like protein promotes 18S pre-rRNA cleavage and is important for kernel development. Plant Cell. 2022;34(5):1957–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto-Ruiz F, Vicente-Soler J, Franco A, Gomez-Gil E, Sanchez-Marinas M, Vazquez-Marin B, Aligue R, Madrid M, Moreno S, Soto T et al. RNA-Binding protein Rnc1 regulates cell length at division and acute stress response in fission yeast through negative feedback modulation of the stress-activated mitogen-activated protein kinase pathway. Mbio. 2020; 11(1).

  • Lee BR, Zaman R, La VH, Park SH, Kim TH. Ethephon-induced ethylene enhances protein degradation in source leaves, but its high endogenous level inhibits the development of regenerative organs in Brassica napus. Plants (Basel) 2021; 10(10).

  • Wang XX, Wei YY, Chen Y, Jiang S, Xu F, Wang HF, Shao XF. NMR revealed that trehalose enhances sucrose accumulation and alleviates chilling injury in peach fruit. Sci Hortic. 2022;303:111190.

    Article 
    CAS 

    Google Scholar
     

  • Wai CM, VanBuren R, Zhang J, Huang L, Miao W, Edger PP, Yim WC, Priest HD, Meyers BC, Mockler T, et al. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple. Plant J. 2017;92(1):19–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho VT, Tran AN, Cardarelli F, Perata P, Pucciariello C. A calcineurin B-like protein participates in low oxygen signalling in rice. Funct Plant Biol. 2017;44(9):917–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazin J, Romero N, Rigo R, Charon C, Blein T, Ariel F, Crespi M. Nuclear speckle RNA binding proteins remodel alternative splicing and the non-coding Arabidopsis transcriptome to regulate a cross-talk between auxin and immune responses. Front Plant Sci. 2018; 9.

  • Lin J, Li QQ. Coupling epigenetics and RNA polyadenylation: missing links. Trends Plant Sci. 2023;28(2):223–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin HH, Huang LF, Su HC, Jeng ST. Effects of the multiple polyadenylation signal AAUAAA on mRNA 3’-end formation and gene expression. Planta. 2009;230(4):699–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link