Scientific Papers

Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways | Cell Communication and Signaling


  • Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsuno M, Sahashi K, Iguchi Y, Hashizume A. Preclinical progression of neurodegenerative diseases. Nagoya University Graduate School of Medicine, School of Medicine; 2018. https://doi.org/10.18999/nagjms.80.3.289. Cited 2023 Aug 1.

  • Metcalfe SM, Bickerton S, Fahmy T. Neurodegenerative disease: a perspective on cell-based therapy in the new era of cell-free nano-therapy. CPD. 2017;23:776–83.

    Article 
    CAS 

    Google Scholar
     

  • Barthélemy NR, Salvadó G, Schindler SE, He Y, Janelidze S, Collij LE, et al. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat Med. 2024;30:1085–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. Perry G, Avila J, Moreira PI, Sorensen AA, Tabaton M, editors. JAD. 2018;64:S611–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, et al. Alzheimer’s disease: an update and insights into pathophysiology. Front Aging Neurosci. 2022;14:742408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frisoni GB, Altomare D, Thal DR, Ribaldi F, Van Der Kant R, Ossenkoppele R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23:53–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Errico P, Meyer-Luehmann M. Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease. Front Aging Neurosci. 2020;12:265.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, et al. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease. Int J Biol Sci. 2021;17:2181–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P T. 2015;40:504–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahimi-Fakhari D, Saidi L-J, Wahlster L. Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun. 2013;1:79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol. 2020;11:356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, et al. Induction of α-synuclein aggregation by intracellular nitrative insult. J Neurosci. 2001;21:8053–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci. 2019;12:299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKeith I. Dementia with Lewy bodies. Dialogues Clin Neurosci. 2004;6:333–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haider A, Spurling BC, Sánchez-Manso JC. Lewy body dementia. In: StatPearls. Treasure Island: StatPearls Publishing; 2023. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482441/. Cited 2024 Jan 5.

  • Kuhn J, Cascella M. Alexander disease. In: StatPearls. Treasure Island: StatPearls Publishing; 2023. Available from: http://www.ncbi.nlm.nih.gov/books/NBK562242/. Cited 2024 Jan 6.

  • Hagemann TL. Alexander disease: models, mechanisms, and medicine. Curr Opin Neurobiol. 2022;72:140–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Li J-Y. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener. 2024;13:16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9:a028035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blokhuis AM, Groen EJN, Koppers M, Van Den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:777–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hergesheimer RC, Chami AA, De Assis DR, Vourc’h P, Andres CR, Corcia P, et al. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain. 2019;142:1176–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortiz GG, Ramírez-Jirano J, Arizaga RL, Delgado-Lara DLC, Torres-Sánchez ED. Frontotemporal-TDP and LATE neurocognitive disorders: a pathophysiological and genetic approach. Brain Sci. 2023;13:1474.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bevan-Jones WR, Cope TE, Jones PS, Kaalund SS, Passamonti L, Allinson K, et al. Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum. Brain. 2020;143:1010–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao H-S, Yuan P, Yu J-T. TMEM106B aggregation in neurodegenerative diseases: linking genetics to function. Mol Neurodegener. 2023;18:54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riku Y, Atsuta N, Yoshida M, Tatsumi S, Iwasaki Y, Mimuro M, et al. Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis. BMJ Open. 2014;4:e005213.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cykowski MD, Powell SZ, Appel JW, Arumanayagam AS, Rivera AL, Appel SH. Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2018;6:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2021;92:86–95.

    Article 

    Google Scholar
     

  • Bayazid R, Orru’ C, Aslam R, Cohen Y, Silva-Rohwer A, Lee S-K, et al. A novel subtype of sporadic Creutzfeldt-Jakob disease with PRNP codon 129MM genotype and PrP plaques. Acta Neuropathol. 2023;146:121–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer I, Puig B, Blanco R, Martı E. Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt-Jakob disease. Neuroscience. 2000;97:715–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccardo P, Ghetti B, Dickson DW, Vinters HV, Bugiani O, Tagliavini F, et al. Gerstmann-Sträussler-Scheinker Disease (PRNP P102L): amyloid deposits are best recognized by antibodies directed to epitopes in PrP region 90–165. J Neuropathol Exp Neurol. 1995;54:790–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cracco L, Xiao X, Nemani SK, Lavrich J, Cali I, Ghetti B, et al. Gerstmann-Sträussler-Scheinker disease revisited: accumulation of covalently-linked multimers of internal prion protein fragments. Acta Neuropathol Commun. 2019;7:85.

    Article 
    PubMed 

    Google Scholar
     

  • Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener. 2023;12:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ubhi K, Low P, Masliah E. Multiple system atrophy: a clinical and neuropathological perspective. Trends Neurosci. 2011;34:581–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, et al. Structures of α-synuclein filaments from multiple system atrophy. Nature. 2020;585:464–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G, Lee EB, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140:99–119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Maldonado A, Ontiveros-Torres MÁ, Harrington CR, Montiel-Sosa JF, Prandiz RG-T, Bocanegra-López P, et al. Molecular processing of tau protein in progressive supranuclear palsy: neuronal and glial degeneration. Ávila J, editor. JAD. 2021;79:1517–31.

    Article 
    PubMed 

    Google Scholar
     

  • Darricau M, Katsinelos T, Raschella F, Milekovic T, Crochemore L, Li Q, et al. Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain. 2023;146:2524–34.

    Article 
    PubMed 

    Google Scholar
     

  • Van Eersel J, Bi M, Ke YD, Hodges JR, Xuereb JH, Gregory GC, et al. Phosphorylation of soluble tau differs in Pick’s disease and Alzheimer’s disease brains. J Neural Transm. 2009;116:1243–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561:137–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winklhofer KF, Tatzelt J, Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 2008;27:336–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-like aggregation in diseases and biomaterials: osmosis of structural information. Front Bioeng Biotechnol. 2021;9:641372.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lansbury PT. Yeast prions: inheritance by seeded protein polymerization? Curr Biol. 1997;7:R617–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol. 2011;22:482–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21:1332–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11:301–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S-J, Desplats P, Lee H-J, Spencer B, Masliah E. Cell-to-cell transmission of α-synuclein aggregates. In: Sigurdsson EM, Calero M, Gasset M, editors. Amyloid proteins. Totowa: Humana Press; 2012. p. 347–59. Available from: https://link.springer.com/10.1007/978-1-61779-551-0_23. Cited 2024 Jan 8.

  • Hijaz BA, Volpicelli-Daley LA. Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener. 2020;15:19.

    Article 
    PubMed 

    Google Scholar
     

  • Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci. 2018;21:1341–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Ospitalieri S, Robberechts T, Hofmann L, Schmid C, Rijal Upadhaya A, et al. Seeding, maturation and propagation of amyloid β-peptide aggregates in Alzheimer’s disease. Brain. 2022;145:3558–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goedert M, Spillantini MG. Propagation of Tau aggregates. Mol Brain. 2017;10:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visanji NP, Brooks PL, Hazrati L-N, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 2018;373:161–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rietdijk CD, Perez-Pardo P, Garssen J, Van Wezel RJA, Kraneveld AD. Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol. 2017;8. http://journal.frontiersin.org/article/10.3389/fneur.2017.00037/full. Cited 2024 Jul 23.

  • Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scannevin RH. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Curr Opin Chem Biol. 2018;44:66–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol. 2004;16:653–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G. Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium. 2010;47:297–314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang J, Qi L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 2018;43:593–605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: from basic to bedside. Front Cell Dev Biol. 2023;11:1156152.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SX, Sanders E, Fliesler SJ, Wang JJ. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res. 2014;125:30–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wortel IMN, Van Der Meer LT, Kilberg MS, Van Leeuwen FN. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 2017;28:794–806.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Gelowani V, Eblimit A, Wang F, Young MP, Sawyer BL, et al. ATF6 is mutated in early onset photoreceptor degeneration with macular involvement. Invest Ophthalmol Vis Sci. 2015;56:3889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchner J. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series. J Biol Chem. 2019;294:2074–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosmaoglou M, Schwarz N, Bett JS, Cheetham ME. Molecular chaperones and photoreceptor function. Prog Retin Eye Res. 2008;27:434–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci. 2015;2. Available from: http://journal.frontiersin.org/Article/10.3389/fmolb.2015.00043/abstract. Cited 2024 Jan 16.

  • Macošek J, Mas G, Hiller S. Redefining molecular chaperones as chaotropes. Front Mol Biosci. 2021;8:683132.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14:630–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Qian X, Sha B. Heat shock protein 40: structural studies and their functional implications. PPL. 2009;16:606–12.

    Article 
    CAS 

    Google Scholar
     

  • Deane CAS, Brown IR. Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells. Cell Stress Chaperones. 2017;22:191–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Fok JHL, Davies FE. Heat shock proteins in multiple myeloma. Oncotarget. 2014;5:1132–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wyszkowski H, Janta A, Sztangierska W, Obuchowski I, Chamera T, Kłosowska A, et al. Class-specific interactions between Sis1 J-domain protein and Hsp70 chaperone potentiate disaggregation of misfolded proteins. Proc Natl Acad Sci USA. 2021;118:e2108163118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wyżewski Z, Gregorczyk KP, Szulc-Dąbrowska L, Struzik J, Szczepanowska J, Niemiałtowski M. Cooperation between heat shock proteins in organizing of proteins spatial structure. Postepy Hig Med Dosw. 2014;68:793–807.

    Article 

    Google Scholar
     

  • Ding J, Li J, Yang D, Yang F, Nie H, Huo Z, et al. Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Cell Stress Chaperones. 2018;23:179–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez T, Dalton K, Frydman J. The mechanism and function of group II chaperonins. J Mol Biol. 2015;427:2919–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Park J, Roh S-H. The structural basis of eukaryotic chaperonin TRiC/CCT: action and folding. Mol Cells. 2024;47:100012.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H. Cochaperones enable Hsp70 to use ATP energy to stabilize native proteins out of the folding equilibrium. Sci Rep. 2018;8:13213.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Fernández MR, Valpuesta JM. Hsp70 chaperone: a master player in protein homeostasis. F1000Res. 2018;7:1497.

    Article 

    Google Scholar
     

  • Sharma D, Masison D. Hsp70 structure, function, regulation and influence on yeast prions. PPL. 2009;16:571–81.

    Article 
    CAS 

    Google Scholar
     

  • Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol. 2022;78:571–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amatya E, Blagg BSJ. Recent advances toward the development of Hsp90 C-terminal inhibitors. Bioorg Med Chem Lett. 2023;80:129111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serwetnyk MA, Blagg BSJ. The disruption of protein−protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B. 2021;11:1446–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuehlke A, Johnson JL. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers. 2010;93:211–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrigan PE, Sikkink LA, Smith DF, Ramirez-Alvarado M. Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Protein Sci. 2006;15:522–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Donato M, Geisler M. HSP 90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett. 2019;593:1415–30.

    Article 
    PubMed 

    Google Scholar
     

  • Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J Biol Chem. 2019;294:2109–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyle SM, Hoskins JR, Kravats AN, Heffner AL, Garikapati S, Wickner S. Intermolecular interactions between Hsp90 and Hsp70. J Mol Biol. 2019;431:2729–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci. 2015;2. Available from: http://journal.frontiersin.org/article/10.3389/fmolb.2015.00010/abstract. Cited 2024 Jul 25.

  • Mogk A, Kummer E, Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci. 2015;2. Available from: http://www.frontiersin.org/Protein_Folding%2c_Misfolding_and_Degradation/10.3389/fmolb.2015.00022/abstract. Cited 2024 Jan 22.

  • Lee G, Kim RS, Lee SB, Lee S, Tsai FTF. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans. 2022;50:1725–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, et al. Insights on human small heat shock proteins and their alterations in diseases. Front Mol Biosci. 2022;9:842149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, et al. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones. 2017;22:601–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto H, Matsui T. Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. J Nippon Med Sch. 2024;91:2–9.

  • Bejarano E, Cuervo AM. Chaperone-mediated autophagy. Proc Am Thorac Soc. 2010;7:29–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik S, Cuervo AM. Chaperone-mediated autophagy. In: Deretic V, editor. Autophagosome and phagosome. Totowa: Humana Press; 2008. p. 227–44. Available from: http://link.springer.com/10.1007/978-1-59745-157-4_15. Cited 2024 Jan 22.

  • Juste YR, Cuervo AM. Analysis of chaperone-mediated autophagy. In: Ktistakis N, Florey O, editors. Autophagy. New York: Springer New York; 2019. p. 703–27. Available from: http://link.springer.com/10.1007/978-1-4939-8873-0_47. Cited 2024 Jan 22.

  • Saha S, Buttari B, Profumo E, Tucci P, Saso L. A perspective on Nrf2 signaling pathway for neuroinflammation: a potential therapeutic target in Alzheimer’s and Parkinson’s diseases. Front Cell Neurosci. 2022;15:787258.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pajares M, Cuadrado A, Rojo AI. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol. 2017;11:543–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W-T, Dodson M. The untapped potential of targeting NRF2 in neurodegenerative disease. Front Aging. 2023;4:1270838.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang T, Harder B, Rojo De La Vega M, Wong PK, Chapman E, Zhang DD. p62 links autophagy and Nrf2 signaling. Free Rad Biol Med. 2015;88:199–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kageyama S, Saito T, Obata M, Koide R, Ichimura Y, Komatsu M. Negative regulation of the Keap1-Nrf2 pathway by a p62/Sqstm1 splicing variant. Mol Cell Biol. 2018;38:e00642–e717.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: assessing the impact of natural vs drug-induced treatment options. Aging Med. 2023;6:82–97.

    Article 

    Google Scholar
     

  • Sivanandy P, Leey TC, Xiang TC, Ling TC, Wey Han SA, Semilan SLA, et al. Systematic review on Parkinson’s disease medications, emphasizing on three recently approved drugs to control Parkinson’s symptoms. IJERPH. 2021;19:364.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami H, Shiraishi T, Umehara T, Omoto S, Iguchi Y. Recent advances in drug therapy for Parkinson’s disease. Intern Med. 2023;62:33–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • AbbVie Launches PRODUODOPA® (foslevodopa/foscarbidopa) for people living with advanced Parkinson’s disease in the European Union open a printable version of this page email the URL of this page to a friend. 2024. Available from: https://news.abbvie.com/2024-01-09-AbbVie-Launches-PRODUODOPA-R-foslevodopa-foscarbidopa-for-People-Living-with-Advanced-Parkinsons-Disease-in-the-European-Union.

  • Rosebraugh M, Voight EA, Moussa EM, Jameel F, Lou X, Zhang GGZ, et al. Foslevodopa/foscarbidopa: a new subcutaneous treatment for Parkinson’s disease. Ann Neurol. 2021;90:52–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksen T, Katzenschlager R, Bhidayasiri R, Staines H, Lockhart D, Lees A. Practical use of apomorphine infusion in Parkinson’s disease: lessons from the TOLEDO study and clinical experience. J Neural Transm. 2023;130:1475–84.

    Article 
    PubMed 

    Google Scholar
     

  • Van Wamelen DJ, Grigoriou S, Chaudhuri KR, Odin P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. Brundin P, Langston JW, Bloem BR, editors. JPD. 2018;8:S65–72.

    Article 
    PubMed 

    Google Scholar
     

  • Espay AJ, Stocchi F, Pahwa R, Albanese A, Ellenbogen A, Ferreira JJ, et al. Safety and efficacy of continuous subcutaneous levodopa–carbidopa infusion (ND0612) for Parkinson’s disease with motor fluctuations (BouNDless): a phase 3, randomised, double-blind, double-dummy, multicentre trial. Lancet Neurol. 2024;23:465–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano G, Taylor KI, Anzures Cabrera J, Simuni T, Marek K, Postuma RB, et al. Prasinezumab slows motor progression in rapidly progressing early-stage Parkinson’s disease. Nat Med. 2024;30:1096–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2024. A&D Transl Res Clin Interv. 2024;10:e12465.

    Article 

    Google Scholar
     

  • Belluck P. New drug approved for early Alzheimer’s. 2024.

  • Hey JA, Yu JY, Versavel M, Abushakra S, Kocis P, Power A, et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2018;57:315–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabuteau H, Jones A, Anderson A, Jacobson M, Iosifescu DV. Effect of AXS-05 (dextromethorphan-bupropion) in major depressive disorder: a randomized double-blind controlled trial. AJP. 2022;179:490–9.

    Article 

    Google Scholar
     

  • Wang H-Y, Cecon E, Dam J, Pei Z, Jockers R, Burns LH. Simufilam reverses aberrant receptor interactions of filamin A in Alzheimer’s disease. IJMS. 2023;24:13927.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan SA, Khan S, Kausar H, Shah R, Luitel A, Gautam S, et al. Insights into the management of Lewy body dementia: a scoping review. Ann Med Surg. 2024;86:930–42.

    Article 

    Google Scholar
     

  • Zilganersen sodium by Ionis Pharmaceuticals for Alexander disease: likelihood of approval. 2024. Available from: https://www.pharmaceutical-technology.com/data-insights/zilganersen-sodium-ionispharmaceuticals-alexander-disease-likelihood-of-approval/?cf-view.

  • Messing A, Daniels CML, Hagemann TL. Strategies for treatment in Alexander disease. Neurotherapeutics. 2010;7:507–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Zhu D, Jiang P, Tang X, Lang Q, Yu Q, et al. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behav Brain Res. 2019;367:10–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn S, Song T-J, Park S-U, Jeon S, Kim J, Oh J-Y, et al. Effects of a combination treatment of KD5040 and L-dopa in a mouse model of Parkinson’s disease. BMC Complement Altern Med. 2017;17:220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: focusing on the Nrf2 signaling pathway. Biomed Pharmacother. 2020;127:110234.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griñán-Ferré C, Bellver-Sanchis A, Olivares-Martín M, Bañuelos-Hortigüela O, Pallàs M. Synergistic neuroprotective effects of a natural product mixture against AD hallmarks and cognitive decline in Caenorhabditis elegans and an SAMP8 mice model. Nutrients. 2021;13:2411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T. Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res. 2008;190:224–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Zang Y, Song Q, Li H, Hu L, Zhao W, et al. The efficacy of a “cocktail therapy” on Parkinson’s disease with dementia. NDT. 2019;15:1639–47.

    Article 
    CAS 

    Google Scholar
     

  • Cummings JL, Osse AML, Kinney JW. Alzheimer’s disease: novel targets and investigational drugs for disease modification. Drugs. 2023;83:1387–408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melchiorri D, Merlo S, Micallef B, Borg J-J, Dráfi F. Alzheimer’s disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol. 2023;14:1196413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarthing K, Prakash N, Simuni T. Clinical trial highlights – dyskinesia. JPD. 2019;9:449–65.

    Article 
    PubMed 

    Google Scholar
     

  • Gaikwad S, Puangmalai N, Sonawane M, Montalbano M, Price R, Iyer MS, et al. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Sci Transl Med. 2024;16:eadj5958.

    Article 
    PubMed 

    Google Scholar
     



  • Source link