Scientific Papers

lncRNA TUG1 transcript levels and psychological disorders: insights into interplay of glycemic index and glycemic load | BMC Medical Genomics


  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106(9):1656–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D O’Brien P, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465–77.

    Article 

    Google Scholar
     

  • Mohamadi A, Shiraseb F, Mirzababaei A, Hosseininasab D, Rasaei N, Clark CC, Mirzaei K. Circulating inflammatory markers may mediate the relationship between healthy plant-based diet and metabolic phenotype obesity in women: a cross-sectional study. International Journal of Clinical Practice. 2022;2022.

  • Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am. 2018;102(1):183–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman J, Smith E, Hay P. The clinical obesity maintenance model: an integration of psychological constructs including mood, emotional regulation, disordered overeating, habitual cluster behaviours, health literacy and cognitive function. Journal of obesity. 2013;2013.

  • Cuevas AG, Chen R, Thurber KA, Slopen N, Williams DR. Psychosocial stress and overweight and obesity: findings from the Chicago community adult health study. Ann Behav Med. 2019;53(11):NP–NP.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34(3):407–19.

    Article 
    CAS 

    Google Scholar
     

  • Pereira-Miranda E, Costa PR, Queiroz VA, Pereira-Santos M, Santana ML. Overweight and obesity associated with higher depression prevalence in adults: a systematic review and meta-analysis. J Am Coll Nutr. 2017;36(3):223–33.

    Article 
    PubMed 

    Google Scholar
     

  • Bremner JD, Moazzami K, Wittbrodt MT, Nye JA, Lima BB, Gillespie CF, et al. Diet, stress and mental health. Nutrients. 2020;12(8):2428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arango C, Dragioti E, Solmi M, Cortese S, Domschke K, Murray RM, et al. Risk and protective factors for mental disorders beyond genetics: an evidence-based atlas. World Psychiatry. 2021;20(3):417–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasaei N, Khadem A, Masihi LS, Mirzaei K. Interaction of fatty acid quality indices and genes related to lipid homeostasis on mental health among overweight and obese women. Sci Rep. 2023;13(1):9580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwamburi DM, Liebson E, Folstein M, Bungay K, Tucker KL, Qiu WQ. Depression and glycemic intake in the homebound elderly. J Affect Disord. 2011;132(1–2):94–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster-Powell K, Holt SHA, Brand-Miller JC. International table of glycemic index and glycemic load values: 20021,2. Am J Clin Nutr. 2002;76(1):5–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barclay AW, Brand-Miller JC, Wolever TM. Glycemic index, glycemic load, and glycemic response are not the same. Diabetes Care. 2005;28(7):1839–41.

    Article 
    PubMed 

    Google Scholar
     

  • Salari-Moghaddam A, Saneei P, Larijani B, Esmaillzadeh A. Glycemic index, glycemic load, and depression: a systematic review and meta-analysis. Eur J Clin Nutr. 2019;73(3):356–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haghighatdoost F, Azadbakht L, Keshteli AH, Feinle-Bisset C, Daghaghzadeh H, Afshar H, et al. Glycemic index, glycemic load, and common psychological disorders. Am J Clin Nutr. 2016;103(1):201–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milagro-Yoldi FI, Mansego-Talavera ML, Miguel-Vázquez C, Martinez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. 2012.

  • Bidisha M, Gouranga M. Epigenomics: the interplay of genetic and epigenetic factors behind psychological disorders. Res J Biotechnol Vol. 2021;16:2.


    Google Scholar
     

  • Rasaei N, Samadi M, Daneshzad E, Hassan-zadeh M, Gholami F, SaeedYekaninejad M et al. The transcript level of long non-coding RNAs; MALAT1 and TUG1, and the association with metabolic syndrome-related parameters in women with overweight and obesity. J Diabetes Metabolic Disorders. 2023:1–13.

  • Rasaei N, Gholami F, Samadi M, Shiraseb F, Khadem A, Yekaninejad MS, et al. The interaction between MALAT1 and TUG1 with dietary fatty acid quality indices on visceral adiposity index and body adiposity index. Sci Rep. 2024;14(1):12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosley AL, Ozcan S. Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem. 2003;278(22):19660–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Reviews Endocrinol. 2010;6(12):665–75.

    Article 
    CAS 

    Google Scholar
     

  • Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol. 2010;80(12):1853–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Xia Z-a, Zhong B, Xiong X, Sheng C, Wang Y, et al. Distinct hippocampal expression profiles of long non-coding RNAs in an Alzheimer’s disease model. Mol Neurobiol. 2017;54:4833–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Luo Y-l, Mao Y-s, Ji J-l. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017;73:73–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non‐coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29(18):3082–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirvani Farsani Z, Zahirodin A, Ghaderian SMH, Shams J, Naghavi Gargari B. The role of long non-coding RNA MALAT1 in patients with bipolar disorder. Metab Brain Dis. 2020;35:1077–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological functions of the lncRNA TUG1. Curr Pharm Design. 2020;26(6):688–700.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, et al. Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol. 2016;277:162–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654–62.

    Article 
    PubMed 

    Google Scholar
     

  • Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7(213):42–58.


    Google Scholar
     

  • Willett W. Nutritional epidemiology. Oxford University Press; 2012.

  • Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr. 2002;76(1):S274–80.

    Article 

    Google Scholar
     

  • Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav Res Ther. 1995;33(3):335–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayani AA. Reliability and preliminary evidence of validity of a Farsi version of the depression anxiety stress scales. Percept Mot Skills. 2010;111(1):107–14.

    Article 
    PubMed 

    Google Scholar
     

  • Ng F, Trauer T, Dodd S, Callaly T, Campbell S, Berk M. The validity of the 21-item version of the depression anxiety stress scales as a routine clinical outcome measure. Acta Neuropsychiatrica. 2007;19(5):304–10.

    Article 
    PubMed 

    Google Scholar
     

  • Henry JD, Crawford JR. The short-form version of the Depression anxiety stress scales (DASS‐21): construct validity and normative data in a large non‐clinical sample. Br J Clin Psychol. 2005;44(2):227–39.

    Article 
    PubMed 

    Google Scholar
     

  • Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202.

    Article 
    PubMed 

    Google Scholar
     

  • Gholami F, Rasaei N, Samadi M, Yekaninejad MS, Keshavarz SA, Javdan G, et al. The relationship of genetic risk score with cardiometabolic risk factors: a cross-sectional study. BMC Cardiovasc Disord. 2022;22(1):459.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei K, Hossein-Nezhad A, Keshavarz S, Eshaghi S, Koohdani F, Saboor-Yaraghi A, et al. Insulin resistance via modification of PGC1α function identifying a possible preventive role of vitamin D analogues in chronic inflammatory state of obesity. A double blind clinical trial study. Minerva Med. 2014;105(1):63–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78(12):848–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao W, Liu Y, Huang H, Xie H, Gong W, Liu D, et al. Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol Stress. 2021;15:100347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui X, Niu W, Kong L, He M, Jiang K, Chen S, et al. Long noncoding RNA expression in peripheral blood mononuclear cells and suicide risk in Chinese patients with major depressive disorder. Brain Behav. 2017;7(6):e00711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Lutz P-E, Wang YC, Ragoussis J, Turecki G. Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Translational Psychiatry. 2018;8(1):224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L-M, Wang M-H, Yang H-C, Tian T, Sun G-F, Ji Y-F, et al. Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway. Aging. 2019;11(21):9264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. A mitocentric view of Parkinson’s disease. Annu Rev Neurosci. 2014;37:137–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seki T, Yamagata H, Uchida S, Chen C, Kobayashi A, Kobayashi M, et al. Altered expression of long noncoding RNAs in patients with major depressive disorder. J Psychiatr Res. 2019;117:92–9.

    Article 
    PubMed 

    Google Scholar
     

  • Piórkowska K, Zygmunt K, Hunter W, Wróblewska K. MALAT1: a long non-coding RNA with multiple functions and its role in processes associated with fat deposition. Genes. 2024;15(4):479.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel RS, Carter G, El Bassit G, Patel AA, Cooper DR, Murr M, Patel NA. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche. Stem cell Invest. 2016;3.

  • Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Communication Signal. 2023;21(1):221.

    Article 
    CAS 

    Google Scholar
     

  • Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. New long-non coding RNAs related to fat deposition based on pig model. Annals Anim Sci. 2022;22(4):1211–24.

    Article 

    Google Scholar
     

  • Ming Y, Deng Z, Tian X, Jia Y, Ning M, Cheng S. Anti-apoptotic capacity of MALAT1 on hippocampal neurons correlates with CASP3 DNA methylation in a mouse model of autism. Metab Brain Dis. 2023;38(8):2591–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han J, Shen L, Zhan Z, Liu Y, Zhang C, Guo R, et al. The long noncoding RNA MALAT1 modulates adipose loss in cancer-associated cachexia by suppressing adipogenesis through PPAR-γ. Nutr Metabolism. 2021;18:1–10.

    Article 

    Google Scholar
     

  • Safari MR, Komaki A, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression pattern of long non-coding RNAs in schizophrenic patients. Cell Mol Neurobiol. 2019;39(2):211–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayad A, Omrani MD, Fallah H, Taheri M, Ghafouri-Fard S. Aberrant expression of long non-coding RNAs in peripheral blood of autistic patients. J Mol Neurosci. 2019;67:276–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdolmaleki A, Ferdowsi S, Asadi A, Panahi Y. Long non-coding RNAs associated with brain disorders: a literature review. Gene Cell Tissue. 2021;8(3).

  • Zhang Y, Gu M, Ma Y, Peng Y. LncRNA TUG1 reduces inflammation and enhances insulin sensitivity in white adipose tissue by regulating miR-204/SIRT1 axis in obesity mice. Mol Cell Biochem. 2020;475(1):171–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimi R, Toolabi K, Jannat Ali Pour N, Mohassel Azadi S, Bahiraee A, Zamani-Garmsiri F, Emamgholipour S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol Metab Syndr. 2020;12(1):36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amirinejad A, Darand M, Davies IG, Mazidi M, Nadjarzadeh A, Mirzaei M, Khayyatzadeh SS. Higher dietary glycemic load is inversely associated with stress prevalence among Iranian adults. BMC Neurosci. 2022;23(1):28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasaei N, Fallah M, Gholami F, Karimi M, Noori S, Bahrampour N, et al. The association between glycemic index and glycemic load and quality of life among overweight and obese women: a cross-sectional study. BMC Nutr. 2023;9(1):30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link