Scientific Papers

Identification of key immune-related genes and potential therapeutic drugs in diabetic nephropathy based on machine learning algorithms | BMC Medical Genomics


  • Kos I, Prkačin I, [diabetic, nephropathy as a cause of chronic kidney disease]. Acta Med Croatica. 2014;68:375–81.

  • Vaidya SR, Aeddula NR. Chronic renal failure. StatPearls. Treasure Island (FL) with ineligible companies. Disclosure: Narothama Aeddula declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2023. StatPearls Publishing LLC.; 2023.

  • Samsu N. Diabetic Nephropathy: challenges in Pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Ouyang J, Li S, Wang H, Lian B, Liu Z, et al. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases. J Translational Med. 2019;17:264.

    Article 

    Google Scholar
     

  • Smith S, Normahani P, Lane T, Hohenschurz-Schmidt D, Oliver N, Davies AH. Prevention and Management Strategies for Diabetic Neuropathy. Life. 2022;12:1185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon MML, Farber DL. The whole body as the System in systems Immunology. iScience. 2020;23:101509.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: pathogenic mechanisms and therapeutic target. Front Immunol. 2022;13:958790.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Dai W, He W. Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms. IET Syst Biol. 2023;17:95–106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Z, Zheng F. Immune cells and inflammation in Diabetic Nephropathy. J Diabetes Res. 2016;2016:1841690.

    PubMed 

    Google Scholar
     

  • Calle P, Hotter G. Macrophage phenotype and fibrosis in Diabetic Nephropathy. Int J Mol Sci. 2020;21.

  • Zhang X, Yang Y, Zhao Y. Macrophage phenotype and its relationship with renal function in human diabetic nephropathy. PLoS ONE. 2019;14:e0221991.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun L, Kanwar YS. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int. 2015;88:662–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu K, Li D, Xu F, Guo H, Feng F, Ding Y, et al. IDO1 as a new immune biomarker for diabetic nephropathy and its correlation with immune cell infiltration. Int Immunopharmacol. 2021;94:107446.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 2021;38:101813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60:2354–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa H, Fujita M, Fujimoto A. Genome sequencing analysis of liver cancer for precision medicine. Semin Cancer Biol. 2019;55:120–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomczak K, Czerwińska P, Wiznerowicz M. Review the Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68–77.


    Google Scholar
     

  • Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, et al. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic disorders. J Neurogastroenterol Motil. 2021;27:19–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Dong X, Hu Y, Jiang X, Li G. Classification and prediction of spinal disease based on the SMOTE-RFE-XGBoost model. PeerJ Comput Sci. 2023;9:e1280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Deng Q, Liang W, Zou X. An efficient feature selection strategy based on multiple support Vector Machine Technology with gene expression data. Biomed Res Int. 2018;2018:7538204.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin X, Li C, Zhang Y, Su B, Fan M, Wei H. Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in Bioinformatics. Molecules. 2017;23.

  • Yang J, Sui H, Jiao R, Zhang M, Zhao X, Wang L, et al. Random-Forest-Algorithm-based applications of the basic characteristics and serum and imaging biomarkers to diagnose mild cognitive impairment. Curr Alzheimer Res. 2022;19:76–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharjee A, Larkman J, Xu Y, Cardoso VR, Gkoutos GV. A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med Genom. 2020;13:178.

    Article 

    Google Scholar
     

  • Guo L, Wang Z, Du Y, Mao J, Zhang J, Yu Z, et al. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int. 2020;20:251.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Jiang L, Liu XQ, Huang YB, Zhu W, Zeng HX, et al. Identification of genes reveals the mechanism of cell ferroptosis in Diabetic Nephropathy. Front Physiol. 2022;13:890566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Peng L, Tian Y, Tang W, Peng L, Ning J, et al. Identification of hub genes involved in Tubulointerstitial Injury in Diabetic Nephropathy by Bioinformatics Analysis and Experiment Verification. J Immunol Res. 2022;2022:7907708.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Li Y, Yang T, Wang M. Dioscin attenuates oxLDL uptake and the inflammatory reaction of dendritic cells under high glucose conditions by blocking p38 MAPK. Mol Med Rep. 2020;21:304–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Harris RC. The role of the epidermal growth factor receptor in Diabetic kidney disease. Cells. 2022;11.

  • Huang CC, Lee CC, Lin HH, Chang JY. Cathepsin S attenuates endosomal EGFR signalling: a mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, et al. Epidermal Growth Factor Protects against High Glucose-Induced Podocyte Injury Possibly via modulation of Autophagy and PI3K/AKT/mTOR signaling pathway through DNA methylation. Diabetes Metab Syndr Obes. 2021;14:2255–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tso PH, Wang Y, Yung LY, Tong Y, Lee MM, Wong YH. RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras. Cell Signal. 2013;25:1064–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Xu L, Lu Y, Zhang J, Yang M, Tian Y, et al. Protective effect of Cordyceps sinensis against diabetic kidney disease through promoting proliferation and inhibiting apoptosis of renal proximal tubular cells. BMC Complement Med Ther. 2023;23:109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satirapoj B, Dispan R, Radinahamed P, Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol. 2018;19:246.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gipson DS, Trachtman H, Waldo A, Gibson KL, Eddy S, Dell KM, et al. Urinary epidermal growth factor as a marker of Disease Progression in Children with Nephrotic Syndrome. Kidney Int Rep. 2020;5:414–25.

    Article 
    PubMed 

    Google Scholar
     

  • Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B, Fu B, et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther. 2013;4:103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morin NJ, Laurent G, Nonclercq D, Toubeau G, Heuson-Stiennon JA, Bergeron MG, et al. Epidermal growth factor accelerates renal tissue repair in a model of gentamicin nephrotoxicity in rats. Am J Physiol. 1992;263:F806–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Harskamp LR, Gansevoort RT, van Goor H, Meijer E. The epidermal growth factor receptor pathway in chronic kidney diseases. Nat Rev Nephrol. 2016;12:496–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vuletic S, Dong W, Wolfbauer G, Day JR, Albers JJ. PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. Biochim Biophys Acta. 2009;1793:584–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlitt A, Liu J, Yan D, Mondragon-Escorpizo M, Norin AJ, Jiang XC. Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice. Biochim Biophys Acta. 2005;1733:187–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan KC, Shiu SW, Wong Y, Tam S. Plasma phospholipid transfer protein activity and subclinical inflammation in type 2 diabetes mellitus. Atherosclerosis. 2005;178:365–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho J, Min HY, Lee HJ, Hyun SY, Sim JY, Noh M et al. RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse. J Clin Invest. 2023;133.

  • Gurley SB, Griffiths RC, Mendelsohn ME, Karas RH, Coffman TM. Renal actions of RGS2 control blood pressure. J Am Soc Nephrol. 2010;21:1847–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang H-S, Kim JI, Noh M, Rhee MH, Park KM. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis. Biochimica et Biophysica Acta (BBA) -. Mol Basis Disease. 2014;1842:1733–41.

    Article 
    CAS 

    Google Scholar
     

  • Hwang IY, Park C, Harrison K, Boularan C, Galés C, Kehrl JH. An essential role for RGS protein/Gαi2 interactions in B lymphocyte-directed cell migration and trafficking. J Immunol. 2015;194:2128–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu S, Ren S, Cai Y, Liu J, Han Y, Zhao Y, et al. Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt–β-catenin–STAT3 signaling. Cell Death Differ. 2022;29:642–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagata N, Fujimori K, Okazaki I, Oda H, Eguchi N, Uehara Y, et al. De novo synthesis, uptake and proteolytic processing of lipocalin-type prostaglandin D synthase, beta-trace, in the kidneys. FEBS J. 2009;276:7146–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y-R, Tang Z-S, Duan J-A, Chen L, Sun J, Zhou R, et al. ER-depletion lowering the ‘hypothalamus-uterus-kidney’ axis functions by perturbing the renal ERβ/Ptgds signalling pathway. Aging. 2019;11:9500–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Gregorio C, Contador D, Campero M, Ezquer M, Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biol Open. 2018;7.

  • Chen J, Harris RC. Interaction of the EGF receptor and the Hippo Pathway in the Diabetic kidney. J Am Soc Nephrol. 2016;27:1689–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the ‘epimmunome’. Nat Immunol. 2010;11:656–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet. 2021;22:71–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Liu Y, Hu Q, Zhou J, Lin H. The landscape of immune cell infiltration in the glomerulus of diabetic nephropathy: evidence based on bioinformatics. BMC Nephrol. 2022;23:303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Guo Y, Jiang Y, Zhu X, Liu Y, Zhang X. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun. 2017;494:42–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Lin Q, Ye D, Wang Y, He B, Li Y, et al. Neutrophil count as a reliable marker for diabetic kidney disease in autoimmune diabetes. BMC Endocr Disorders. 2020;20:158.

    Article 
    CAS 

    Google Scholar
     

  • Galkina E, Ley K. Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol. 2006;17:368–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uddin M, Lau LC, Seumois G, Vijayanand P, Staples KJ, Bagmane D, et al. EGF-induced bronchial epithelial cells drive neutrophil chemotactic and anti-apoptotic activity in asthma. PLoS ONE. 2013;8:e72502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochieng P, Nath S, Macarulay R, Eden E, Dabo A, Campos M, et al. Phospholipid transfer protein and alpha-1 antitrypsin regulate hck kinase activity during neutrophil degranulation. Sci Rep. 2018;8:15394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen D, Liu Y, Chen J, Lin H, Guo H, Wu Y, et al. JAK/STAT pathway promotes the progression of diabetic kidney disease via autophagy in podocytes. Eur J Pharmacol. 2021;902:174121.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ozaki T, Kaibori M, Matsui K, Tokuhara K, Tanaka H, Kamiyama Y, et al. Effect of thiol-containing molecule cysteamine on the induction of inducible nitric oxide synthase in hepatocytes. JPEN J Parenter Enter Nutr. 2007;31:366–71. discussion 71-2.

    Article 
    CAS 

    Google Scholar
     

  • Sun H, Tsai Y, Nowak I, Liesveld J, Chen Y. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis. Stem Cell Res. 2012;9:77–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link