Scientific Papers

Effects of repeated unihemispheric concurrent dual-site tDCS and virtual reality games on motor coordination of sedentary adolescent girls | Behavioral and Brain Functions


  • Corder K, Sharp SJ, Atkin AJ, Griffin SJ, Jones AP, Ekelund U, et al. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2015;49(11):730–6.

    Article 
    PubMed 

    Google Scholar
     

  • Yarcheski A, Mahon NE, Yarcheski TJ. Anger in early adolescent boys and girls with health manifestations. Nurs Res. 2002;51(4):229–36.

    Article 
    PubMed 

    Google Scholar
     

  • Raman A, Fitch MD, Hudes ML, Lustig RH, Murray CB, Ikeda JP, et al. Baseline correlates of insulin resistance in inner city high-BMI African‐American children. Obesity. 2008;16(9):2039–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaput J-P, Willumsen J, Bull F, Chou R, Ekelund U, Firth J, et al. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: summary of the evidence. Int J Behav Nutr Phys Activity. 2020;17(1):141.

    Article 

    Google Scholar
     

  • Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques A, Henriques-Neto D, Peralta M, Martins J, Demetriou Y, Schönbach DMI et al. Prevalence of physical activity among adolescents from 105 low, Middle, and high-income countries. Int J Environ Res Public Health. 2020;17(9).

  • Bhukar J. Effect of six week coordinative drills on eye hand coordination of young Athletes. 2023.

  • Vandorpe B, Vandendriessche J, Vaeyens R, Pion J, Matthys S, Lefevre J, et al. Relationship between sports participation and the level of motor coordination in childhood: a longitudinal approach. J Sci Med Sport. 2012;15(3):220–5.

    Article 
    PubMed 

    Google Scholar
     

  • Crawford JD, Medendorp WP, Marotta JJ. Spatial transformations for eye–hand coordination. J Neurophysiol. 2004.

  • Niechwiej-Szwedo E, Wu S, Nouredanesh M, Tung J, Christian LW. Development of eye-hand coordination in typically developing children and adolescents assessed using a reach-to-grasp sequencing task. Hum Mov Sci. 2021;80:102868.

    Article 
    PubMed 

    Google Scholar
     

  • Telford RD, Cunningham RB, Telford RM, Olive LS, Byrne D, Abhayaratna W. Benefits of early development of eye–hand coordination: evidence from the LOOK longitudinal study. Scand J Med Sci Sports. 2013;23(5):e263–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shetty AK, Shankar MSV, Annamalai N. Bimanual coordination: influence of age and gender. J Clin Diagn Research: JCDR. 2014;8(2):15–6.


    Google Scholar
     

  • Pixa NH, Pollok B. Effects of tDCS on Bimanual Motor skills: a brief review. Front Behav Neurosci. 2018;12:63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudisch J, Müller K, Kutz DF, Brich L, Sleimen-Malkoun R, Voelcker-Rehage C. How age, cognitive function and gender affect Bimanual Force Control. Front Physiol. 2020;11:245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto S, Ishii D, Ishibashi K, Kohno Y. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex modulates cognitive function related to motor execution during Sequential Task: a Randomized Control Study. Front Hum Neurosci. 2022;16:890963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan D, Martin BJ. Eye–hand coordination of symmetric bimanual reaching tasks: temporal aspects. Exp Brain Res. 2010;203(2):391–405.

    Article 
    PubMed 

    Google Scholar
     

  • Hamad A, Jia B. How virtual reality technology has changed our lives: an overview of the current and potential applications and limitations. Int J Environ Res Public Health. 2022;19(18).

  • Qian J, McDonough DJ, Gao Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int J Environ Res Public Health. 2020;17(11).

  • Norouzi E, Gerber M, Pühse U, Vaezmosavi M, Brand S. Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychological Rehabilitation. 2021;31(4):552–69.

    Article 
    PubMed 

    Google Scholar
     

  • Sabel M, Sjolund A, Broeren J, Arvidsson D, Saury JM, Blomgren K, et al. Active video gaming improves body coordination in survivors of childhood brain tumours. Disabil Rehabil. 2016;38(21):2073–84.

    Article 
    PubMed 

    Google Scholar
     

  • Rutkowski S, Jakóbczyk A, Abrahamek K, Nowakowska A, Nowak M, Liska D, et al. Training using a commercial immersive virtual reality system on hand–eye coordination and reaction time in students: a randomized controlled trial. Virtual Reality. 2024;28(1):7.

    Article 

    Google Scholar
     

  • Ren Z, Wu J. The effect of virtual reality games on the Gross Motor skills of children with cerebral palsy: a Meta-analysis of Randomized controlled trials. Int J Environ Res Public Health. 2019;16(20).

  • Farič N, Smith L, Hon A, Potts HW, Newby K, Steptoe A, et al. A virtual reality exergame to engage adolescents in physical activity: mixed methods study describing the formative intervention development process. J Med Internet Res. 2021;23(2):e18161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Chen S, Pasco D, Pope Z. A meta-analysis of active video games on health outcomes among children and adolescents. Obes Rev. 2015;16(9):783–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foley L, Maddison R. Use of active video games to increase physical activity in children: a (virtual) reality? Pediatr Exerc Sci. 2010;22(1):7–20.

    Article 
    PubMed 

    Google Scholar
     

  • Ma AWW, Qu L. The effect of exergaming on eye-hand coordination among primary school children: a pilot study. Adv Phys Educ. 2016;6(2):99–102.

    Article 

    Google Scholar
     

  • Caro K, Tentori M, Martinez-Garcia AI, Alvelais M. Using the FroggyBobby exergame to support eye-body coordination development of children with severe autism. Int J Hum Comput Stud. 2017;105:12–27.

    Article 

    Google Scholar
     

  • Schaerz S, Boyes M, Mohamed A. The Effect of Extended reality Exercise on Physical Activity and Physical Performance in Children and Youth: a scoping review. J Electron Gaming Esports. 2023;1(1):jege2023–0016.

    Article 

    Google Scholar
     

  • Kruger PE, Campher J, Smit C. The role of visual skills and its impact on skill performance of cricket players and sport science. Afr J Phys Health Educ Recreation Dance. 2009;15(4):605–23.


    Google Scholar
     

  • Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.

    Article 
    PubMed 

    Google Scholar
     

  • Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado D. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil. 2023;20(1):97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moslemi B, Azmodeh M, Tabatabaei M, Alivandi Vafa M. The Effect of Transcranial Direct Current Stimulation on Dorsolateral Prefrontal Cortex: a review of its role on cognitive functions. Neurosci J Shefaye Khatam. 2019;8(1):129–44.

    Article 

    Google Scholar
     

  • Etemadi M, Amiri E, Tadibi V, Grospretre S, Valipour Dehnou V, Machado D. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci. 2023;24(1):25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghayebzadeh S, Zardoshtian S, Amiri E, Giboin LS, Machado D. Anodal Transcranial Direct Current Stimulation over the right Dorsolateral Prefrontal Cortex boosts decision making and functional impulsivity in female sports referees. Life (Basel). 2023;13(5).

  • Rajji TK, Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Neuroplasticity-based brain stimulation interventions in the study and treatment of schizophrenia: a review. Can J Psychiatry. 2013;58(2):93–8.

    Article 
    PubMed 

    Google Scholar
     

  • Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013;219(2):297–311.

    Article 
    PubMed 

    Google Scholar
     

  • Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.

    Article 
    PubMed 

    Google Scholar
     

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article 
    PubMed 

    Google Scholar
     

  • Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci. 2017;11:641.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lattari E, Campos C, Lamego MK, Legey S, Neto GM, Rocha NB, et al. Can transcranial direct current stimulation improve muscle power in individuals with advanced weight-training experience? J Strength Conditioning Res. 2020;34(1):97–103.

    Article 

    Google Scholar
     

  • Machado D, Unal G, Andrade SM, Moreira A, Altimari LR, Brunoni AR, et al. Effect of transcranial direct current stimulation on exercise performance: a systematic review and meta-analysis. Brain Stimul. 2019;12(3):593–605.

    Article 
    PubMed 

    Google Scholar
     

  • Machado D, Amiri E. Letter to the editor regarding single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: a systematic review and meta-analysis. Brain Stimul. 2023;16(5):1549–50.

    Article 
    PubMed 

    Google Scholar
     

  • Machado D, Amiri E. Critical considerations on tDCS-induced changes in corticospinal excitability and exercise performance: should we go beyond M1? J Physiol. 2023;601(23):5453–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, et al. Improving Cycling performance: Transcranial Direct Current Stimulation increases time to exhaustion in Cycling. PLoS ONE. 2015;10(12):e0144916.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grospretre S, Grandperrin Y, Nicolier M, Gimenez P, Vidal C, Tio G, et al. Effect of transcranial direct current stimulation on the psychomotor, cognitive, and motor performances of power athletes. Sci Rep. 2021;11(1):9731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alix-Fages C, Romero-Arenas S, Castro-Alonso M, Colomer-Poveda D, Rio-Rodriguez D, Jerez-Martinez A et al. Short-term effects of Anodal Transcranial Direct current stimulation on endurance and maximal force production. A systematic review and Meta-analysis. J Clin Med. 2019;8(4).

  • Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angius L, Santarnecchi E, Pascual-Leone A, Marcora SM. Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience. 2019;419:34–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi S, Liang Z, Wei Z, Liu Y, Wang X. Effects of transcranial direct current stimulation on motor skills learning in healthy adults through the activation of different brain regions: a systematic review. Front Hum Neurosci. 2022;16.

  • Kunaratnam N, Saumer TM, Kuan G, Holmes Z, Swarbrick D, Kiss A, et al. Transcranial direct current stimulation leads to faster acquisition of motor skills, but effects are not maintained at retention. PLoS ONE. 2022;17(9):e0269851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaseghi B, Zoghi M, Jaberzadeh S. The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects: conventional vs. unihemispheric concurrent dual-site stimulation. Front Hum Neurosci. 2015;9:533.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurdiel-Alvarez F, Gonzalez-Zamorano Y, Lerma Lara S, Gomez-Soriano J, Taylor J, Romero JP et al. Effectiveness of Unihemispheric Concurrent Dual-Site Stimulation over M1 and Dorsolateral Prefrontal Cortex Stimulation on Pain Processing: a Triple Blind Cross-over Control Trial. Brain Sci. 2021;11(2).

  • Banaei P, Tadibi V, Amiri E, Machado D. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep. 2023;13(1):16473.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talimkhani A, Abdollahi I, Mohseni-Bandpei MA, Ehsani F, Khalili S, Jaberzadeh S. Differential effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: a Randomized, Sham-controlled study. Basic Clin Neurosci. 2019;10(1):59–72.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin Neurophysiol. 2017;128(4):589–603.

    Article 
    PubMed 

    Google Scholar
     

  • Bell ML, Kenward MG, Fairclough DL, Horton NJ. Differential dropout and bias in randomised controlled trials: when it matters and when it may not. BMJ. 2013;346:e8668.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • BashiriMoosavi F, Farmanbar R, Taghdisi M, AtrkarRoshan Z. Level of physical activity among girl high school students in Tarom County and relevant factors. Iran J Health Educ Health Promotion. 2015;3(2):133–40.


    Google Scholar
     

  • Amiri E, Gharakhanlou R, Rajabi H, Giboin LS, Rezasoltani Z, Azma K. Non-local muscle fatigue is mediated at spinal and supraspinal levels. Exp Brain Res. 2022;240(6):1887–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.

    Article 
    PubMed 

    Google Scholar
     

  • Moreira A, Machado DGS, Moscaleski L, Bikson M, Unal G, Bradley PS, et al. Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiol Behav. 2021;233:113351.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreira A, Machado D, Bikson M, Unal G, Bradley PS, Moscaleski L, et al. Effect of Transcranial Direct Current Stimulation on Professional Female Soccer players’ recovery following official matches. Percept Mot Skills. 2021;128(4):1504–29.

    Article 
    PubMed 

    Google Scholar
     

  • Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:222–5.

    PubMed 

    Google Scholar
     

  • Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 2015;109:140–50.

    Article 
    PubMed 

    Google Scholar
     

  • Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct Current Stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 2017;10(1):51–8.

    Article 
    PubMed 

    Google Scholar
     

  • da Silva Machado DG, Bikson M, Datta A, Caparelli-Daquer E, Unal G, Baptista AF, et al. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep. 2021;11(1):13911.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saenz-de-Urturi Z, Garcia-Zapirain Soto B. Kinect-based virtual game for the elderly that detects incorrect body postures in real time. Sensors. 2016;16(5):704.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homma S. Correlations between anxiety and the stress responses of electrogastrography (EGG) induced by the mirror drawing test (MDT). J Smooth Muscle Res. 2014;50:1–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julius MS, Adi-Japha E. A developmental perspective in learning the mirror-drawing task. Front Hum Neurosci. 2016;10:83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennathur A, Contreras LR, Arcaute K, Dowling W. Manual dexterity of older Mexican American adults: a cross-sectional pilot experimental investigation. Int J Ind Ergon. 2003;32(6):419–31.

    Article 

    Google Scholar
     

  • Cole TJ, Altman DG. Statistics notes: what is a percentage difference? BMJ. 2017;358:j3663.

    Article 
    PubMed 

    Google Scholar
     

  • Ren K, Gong X-M, Zhang R, Chen X-H. Effects of virtual reality training on limb movement in children with spastic diplegia cerebral palsy. Zhongguo Dang Dai Er Ke Za Zhi = Chinese. J Contemp Pediatr. 2016;18(10):975–9.


    Google Scholar
     

  • Sharan D, Ajeesh P, Rameshkumar R, Mathankumar M, Paulina RJ, Manjula M. Virtual reality based therapy for post operative rehabilitation of children with cerebral palsy. Work. 2012;41(Supplement 1):3612–5.

    Article 
    PubMed 

    Google Scholar
     

  • Elsaeh M, Pudlo P, Djemai M, Bouri M, Thevenon A, Heymann I, editors. The effects of haptic-virtual reality game therapy on brain-motor coordination for children with hemiplegia: A pilot study. 2017 International Conference on Virtual Rehabilitation (ICVR); 2017: IEEE.

  • Allcott-Watson H, Chater A, Troop N, Howlett N. A systematic review of interventions targeting physical activity and/or healthy eating behaviours in adolescents: practice and training. Health Psychol Rev. 2023:1–24.

  • Biddiss E, Irwin J. Active video games to promote physical activity in children and youth: a systematic review. Arch Pediatr Adolesc Med. 2010;164(7):664–72.

    Article 
    PubMed 

    Google Scholar
     

  • Staiano AE, Calvert SL. Exergames for physical education courses: physical, social, and cognitive benefits. Child Dev Perspect. 2011;5(2):93–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fryling MJ, Johnston C, Hayes LJ. Understanding observational learning: an interbehavioral approach. Anal Verbal Behav. 2011;27(1):191–203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev. 1977;84(2):191.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Syed Ali SKB, Ji L. Use of Observational Learning to Promote Motor Skill Learning in Physical Education: a systematic review. Int J Environ Res Public Health. 2022;19(16).

  • Ji Y, Ni X, Zheng K, Jiang Y, Ren C, Zhu H, et al. Synergistic effects of aerobic exercise and transcranial direct current stimulation on executive function and biomarkers in healthy young adults. Brain Res Bull. 2023;202:110747.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg F, Pixa NH, Fregni F. A review of Acute Aerobic Exercise and Transcranial Direct Current Stimulation effects on cognitive functions and their potential synergies. Front Hum Neurosci. 2018;12:534.

    Article 
    PubMed 

    Google Scholar
     

  • Pixa NH, Steinberg F, Doppelmayr M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neurosci Lett. 2017;643:84–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciechanski P, Kirton A. Transcranial direct-current stimulation can enhance motor learning in children. Cereb Cortex. 2017;27(5):2758–67.

    PubMed 

    Google Scholar
     

  • Carter MJ, Maslovat D, Carlsen AN. Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. J Neurophysiol. 2015;113(3):780–5.

    Article 
    PubMed 

    Google Scholar
     

  • Cao N, Pi Y, Qiu F, Wang Y, Xia X, Liu Y, et al. Plasticity changes in dorsolateral prefrontal cortex associated with procedural sequence learning are hemisphere-specific. NeuroImage. 2022;259:119406.

    Article 
    PubMed 

    Google Scholar
     

  • Agboada D, Mosayebi-Samani M, Kuo MF, Nitsche MA. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation – better effects with intensified protocols? Brain Stimul. 2020;13(4):987–97.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Y, Pi Y, Wang Y, Xia X, Qiu F, Cao N, et al. Dorsolateral prefrontal cortex mediates working memory processes in motor skill learning. Psychol Sport Exerc. 2022;59:102129.

    Article 

    Google Scholar
     

  • Jancke L, Cheetham M, Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci. 2009;3(1):52–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo NG, Kim GW, Won YH, Park SH, Seo JH, Ko MH. Timing-dependent effects of Transcranial Direct Current Stimulation on Hand Motor function in healthy individuals: a randomized controlled study. Brain Sci. 2021;11(10).

  • Furuya S, Nitsche MA, Paulus W, Altenmüller E. Early optimization in finger dexterity of skilled pianists: implication of transcranial stimulation. BMC Neurosci. 2013;14:1–8.

    Article 

    Google Scholar
     

  • Vancleef K, Meesen R, Swinnen SP, Fujiyama H. tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task. Sci Rep. 2016;6(1):35739.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCambridge AB, Stinear JW, Byblow WD. Neurophysiological and behavioural effects of dual-hemisphere transcranial direct current stimulation on the proximal upper limb. Exp Brain Res. 2016;234:1419–28.

    Article 
    PubMed 

    Google Scholar
     



  • Source link