Scientific Papers

Oxygenator assisted dynamic microphysiological culture elucidates the impact of hypoxia on valvular interstitial cell calcification | Journal of Biological Engineering


  • Khanna A, Oropeza BP, Huang NF. Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy. J Biomed Mater Res A. 2023.

  • Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: considerations for developing a valve-on-chip. Biophys Rev-Us. 2021;2(4).

  • Mendoza M, Chen MH, Huang P, Mahler GJ. Shear and endothelial induced late-stage calcific aortic valve disease-on-a-chip develops calcium phosphate mineralizations. Lab Chip. 2022;22(7):1374–85.

    Article 

    Google Scholar
     

  • Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, et al. Challenges of aortic valve tissue culture – maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng. 2023;17(1):60.

    Article 

    Google Scholar
     

  • Beckmann A, Meyer R, Lewandowski J, Markewitz A, Blassfeld D, Boning A. German heart surgery report 2022: the Annual updated Registry of the German society for thoracic and Cardiovascular surgery. Thorac Cardiovasc Surg. 2023;71(5):340–55.

    Article 

    Google Scholar
     

  • Yi B, Zeng WK, Lv L, Hua P. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories. Aging-Us. 2021;13(9):12710–32.

    Article 

    Google Scholar
     

  • Rajput FA, Zeltser R. Aortic Valve Replacement. StatPearls. Treasure Island (FL)2023.

  • Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J. 2022;43(7):683–.

    Article 

    Google Scholar
     

  • Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91.

    Article 

    Google Scholar
     

  • Liu X, Xu Z. Osteogenesis in calcified aortic valve disease: from histopathological observation towards molecular understanding. Prog Biophys Mol Biol. 2016;122(2):156–61.

    Article 

    Google Scholar
     

  • Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stenslokken KO et al. Valve interstitial cells: the key to understanding the pathophysiology of Heart Valve Calcification. J Am Heart Assoc. 2017;6(9).

  • Bogdanova M, Zabirnyk A, Malashicheva A, Enayati KZ, Karlsen TA, Kaljusto ML, et al. Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Sci Rep. 2019;9(1):12934.

    Article 

    Google Scholar
     

  • Anousakis-Vlachochristou N, Athanasiadou D, Carneiro KMM, Toutouzas K. Focusing on the native Matrix proteins in Calcific aortic valve stenosis. Jacc-Basic Transl Sc. 2023;8(8):1028–39.


    Google Scholar
     

  • Dittfeld C, Haase M, Feilmeier M, Jannasch A, Buttner P, Plotze K, et al. Movat Pentachrom stain reveals unexpected high osteogenesis rate in aortic valves. Acta Histochem. 2017;119(5):533–7.

    Article 

    Google Scholar
     

  • Leskelä HV, Satta J, Oiva J, Eriksen H, Risteli J, Korkiamäki P, et al. Calcification and cellularity in human aortic heart valve tissue determine the differentiation of bone-marrow-derived cells. J Mol Cell Cardiol. 2006;41(4):642–9.

    Article 

    Google Scholar
     

  • Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, et al. Calcific aortic valve disease: a consensus summary from the Alliance of investigators on calcific aortic valve disease. Arterioscler Thromb Vasc Biol. 2014;34(11):2387–93.

    Article 

    Google Scholar
     

  • Georgy M, Salhiyyah K, Yacoub MH, Chester AH. Role of hypoxia inducible factor HIF-1alpha in heart valves. Glob Cardiol Sci Pract. 2023;2023(2):e202309.


    Google Scholar
     

  • Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51.

  • Csiki DM, Ababneh H, Tóth A, Lente G, Szöör A, Tóth A et al. Hypoxia-inducible factor activation promotes osteogenic transition of valve interstitial cells and accelerates aortic valve calcification in a mice model of chronic kidney disease. Front Cardiovasc Med. 2023;10.

  • Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE. Loss of beta-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol. 2014;34(12):2601–8.

    Article 

    Google Scholar
     

  • Weind KL, Ellis CG, Boughner DR. Aortic valve cusp vessel density: relationship with tissue thickness. J Thorac Cardiovasc Surg. 2002;123(2):333–40.

    Article 

    Google Scholar
     

  • Katsi V, Magkas N, Antonopoulos A, Trantalis G, Toutouzas K, Tousoulis D. Aortic valve: anatomy and structure and the role of vasculature in the degenerative process. Acta Cardiol. 2021;76(4):335–48.

    Article 

    Google Scholar
     

  • Lewis CTA, Mascall KS, Wilson HM, Murray F, Kerr KM, Gibson G, et al. An endogenous inhibitor of angiogenesis downregulated by hypoxia in human aortic valve stenosis promotes disease pathogenesis. J Mol Cell Cardiol. 2023;174:25–37.

    Article 

    Google Scholar
     

  • Gendron N, Rosa M, Blandinieres A, Sottejeau Y, Rossi E, Van Belle E, et al. Human aortic valve interstitial cells display Proangiogenic Properties during Calcific aortic valve disease. Arterioscl Throm Vas. 2021;41(1):415–29.

    Article 

    Google Scholar
     

  • Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C et al. The Complex relationship between Hypoxia Signaling, mitochondrial dysfunction and inflammation in calcific aortic valve disease: insights from the Molecular mechanisms to therapeutic approaches. Int J Mol Sci. 2023;24(13).

  • Perrotta I, Moraca FM, Sciangula A, Aquila S, Mazzulla S. HIF-1alpha and VEGF: immunohistochemical Profile and possible function in human aortic valve stenosis. Ultrastruct Pathol. 2015;39(3):198–206.

    Article 

    Google Scholar
     

  • Sapp MC, Krishnamurthy VK, Puperi DS, Bhatnagar S, Fatora G, Mutyala N, et al. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves. J R Soc Interface. 2016;13:125.

    Article 

    Google Scholar
     

  • Swaminathan G, Krishnamurthy VK, Sridhar S, Robson DC, Ning Y, Grande-Allen KJ. Hypoxia stimulates synthesis of Neutrophil Gelatinase-Associated Lipocalin in aortic valve disease. Front Cardiovasc Med. 2019;6:156.

    Article 

    Google Scholar
     

  • Kolanowski TJ, Busek M, Schubert M, Dmitrieva A, Binnewerg B, Poche J, et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 2020;102:273–86.

    Article 

    Google Scholar
     

  • Dittfeld C, Reimann G, Mieting A, Buttner P, Jannasch A, Plotze K, et al. Treatment with XAV-939 prevents in vitro calcification of human valvular interstitial cells. PLoS ONE. 2018;13(12):e0208774.

    Article 

    Google Scholar
     

  • Winkelkotte MSF, Behrens S, Salminger D, Jannasch A, Matschke K, Tugtekin SM, Sonntag F, Dittfeld C. Micro-physiological-systems enable investigation of hypoxia induced pathological processes in human aortic valve cells and tissues_submitted. to Current Directions of Biomedical Engineering; 2021.

  • Place TL, Domann FE, Case AJ. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic Biol Med. 2017;113:311–22.

    Article 

    Google Scholar
     

  • Ivan M, Kaelin WG. The EGLN-HIF O2-Sensing system: multiple inputs and feedbacks. Mol Cell. 2017;66(6):772–9.

    Article 

    Google Scholar
     

  • Goto S, Rogers MA, Blaser MC, Higashi H, Lee LH, Schlotter F, et al. Standardization of human calcific aortic valve disease in vitro modeling reveals passage-dependent calcification. Front Cardiovasc Med. 2019;6:49.

    Article 

    Google Scholar
     

  • Buttner P, Feistner L, Lurz P, Thiele H, Hutcheson JD, Schlotter F. Dissecting calcific aortic valve disease-the role, etiology, and drivers of Valvular Fibrosis. Front Cardiovasc Med. 2021;8:660797.

    Article 

    Google Scholar
     

  • Wang L, Korossis S, Fisher J, Ingham E, Jin Z. Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection. J Heart Valve Dis. 2011;20(4):442–8.


    Google Scholar
     

  • Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

    Article 

    Google Scholar
     

  • Majmundar AJ, Wong WHJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

    Article 

    Google Scholar
     

  • Görlach A. Regulation of HIF-1α at the transcriptional level. Curr Pharm Des. 2009;15(33):3844–52.

    Article 

    Google Scholar
     

  • Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Bürgel T, Jelkmann W. Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J. 2005;387:711–7.

    Article 

    Google Scholar
     

  • Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, et al. EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54.

    Article 

    Google Scholar
     

  • Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, et al. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn. 2023;41(19):10257–76.

    Article 

    Google Scholar
     

  • Wirrig EE, Yutzey KE. Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol. 2014;34(4):737–41.

    Article 

    Google Scholar
     

  • Qiu M, Lu Y, Li JH, Gu J, Ji Y, Shao YF, et al. Interaction of SOX5 with SOX9 promotes warfarin-induced aortic valve interstitial cell calcification by repressing transcriptional activation of LRP6. J Mol Cell Cardiol. 2022;162:81–96.

    Article 

    Google Scholar
     

  • Balogh E, Toth A, Mehes G, Trencsenyi G, Paragh G, Jeney V. Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-Inducible factor 1)-Dependent and reactive oxygen species-dependent manner. Arterioscler Thromb Vasc Biol. 2019;39(6):1088–99.

    Article 

    Google Scholar
     

  • Kuiper C, Dachs GU, Currie MJ, Vissers MCM. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radical Bio Med. 2014;69:308–17.

    Article 

    Google Scholar
     

  • Negri AL. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin Kidney J. 2023;16(2):205–9.

    Article 

    Google Scholar
     

  • Mokas S, Larivière R, Lamalice L, Gobeil S, Cornfield DN, Agharazii M, et al. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int. 2016;90(3):598–609.

    Article 

    Google Scholar
     



  • Source link