Scientific Papers

Robotic assessment of bilateral and unilateral upper limb functions in adults with cerebral palsy | Journal of NeuroEngineering and Rehabilitation


  • Kantak S, Jax S, Wittenberg G. Bimanual coordination: a missing piece of arm rehabilitation after stroke. Restor Neurol Neurosci. 2017;35(4):347–64.

    PubMed 

    Google Scholar
     

  • Kim RK, Kang N. Bimanual coordination functions between paretic and nonparetic arms: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2020;29(2): 104544.

    Article 
    PubMed 

    Google Scholar
     

  • Hung Y-C, Charles J, Gordon AM. Influence of accuracy constraints on bimanual coordination during a goal-directed task in children with hemiplegic cerebral palsy. Exp Brain Res. 2010;201(3):421–8.

    Article 
    PubMed 

    Google Scholar
     

  • Hung Y-C, Charles J, Gordon AM. Bimanual coordination during a goal-directed task in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2004;46(11):746–53.

    Article 
    PubMed 

    Google Scholar
     

  • Hung Y-C, Spingarn A. Whole body organization during a symmetric bimanual pick up task for children with unilateral cerebral palsy. Gait Posture. 2018;64:38–42.

    Article 
    PubMed 

    Google Scholar
     

  • Langan J, Doyle ST, Hurvitz EA, Brown SH. Influence of task on interlimb coordination in adults with cerebral palsy. Arch Phys Med Rehabil. 2010;91(10):1571–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lott C, Johnson MJ. Upper limb kinematics of adults with cerebral palsy on bilateral functional tasks. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2016;2016:5676–9.

  • Odding E, Roebroeck ME, Stam HJ. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil. 2006;28(4):183–91.

    Article 
    PubMed 

    Google Scholar
     

  • Himmelmann K, Hagberg G, Uvebrant P. The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth-year period 1999–2002. Acta Paediatr. 2010;99(9):1337–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuczynski AM, Kirton A, Semrau JA, Dukelow SP. Bilateral reaching deficits after unilateral perinatal ischemic stroke: a population-based case-control study. J Neuroengineering Rehabil. 2018;15(1):77.

    Article 

    Google Scholar
     

  • Wang TN, Howe TH, Liang KJ, Chang TW, Shieh JY, Chen HL. Bimanual motor performance in everyday life activities of children with hemiplegic cerebral palsy. Eur J Phys Rehabil Med. 2021;57(4):568–76.

    Article 
    PubMed 

    Google Scholar
     

  • Sakzewski L, Ziviani J, Boyd R. The relationship between unimanual capacity and bimanual performance in children with congenital hemiplegia. Dev Med Child Neurol. 2010;52(9):811–6.

    Article 
    PubMed 

    Google Scholar
     

  • Martinie O, Mercier C, Gordon AM, Robert MT. Upper limb motor planning in individuals with cerebral palsy aged between 3 and 21 years old: a systematic review. Brain Sci. 2021;11(7):920.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliasson AC, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Ohrvall AM, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.

    Article 
    PubMed 

    Google Scholar
     

  • Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50(6):311–9.

    CAS 
    PubMed 

    Google Scholar
     

  • van Meeteren J, Nieuwenhuijsen C, de Grund A, Stam HJ, Roebroeck ME. Using the manual ability classification system in young adults with cerebral palsy and normal intelligence. Disabil Rehabil. 2010;32(23):1885–93.

    Article 
    PubMed 

    Google Scholar
     

  • Simmatis LER, Early S, Moore KD, Appaqaq S, Scott SH. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing. J Neuroeng Rehabil. 2020;17(1):86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyryshkin K, Coderre AM, Glasgow JI, Herter TM, Bagg SD, Dukelow SP, et al. A robotic object hitting task to quantify sensorimotor impairments in participants with stroke. J Neuroeng Rehabil. 2014;11:47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowrey C, Jackson C, Bagg S, Dukelow S, Scott S. A novel robotic task for assessing impairments in bimanual coordination post-stroke. Int J Phys Med Rehabil. 2014;S3:002.

    Article 

    Google Scholar
     

  • Coderre AM, Amr Abou Z, Dukelow SP, Demmer MJ, Moore KD, Demers MJ, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010;24(6):528–41.

    Article 
    PubMed 

    Google Scholar
     

  • Mang CS, Whitten TA, Cosh MS, Scott SH, Wiley JP, Debert CT, et al. Test–retest reliability of the KINARM end-point robot for assessment of sensory, motor and neurocognitive function in young adult athletes. PLoS ONE. 2018;13(4): e0196205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinarm Standard Tests Summary (Collection version 3.8.1, analysis version 3.8.1). Kingston, Ontario, Canada.

  • Yoav B, Daniel Y. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.


    Google Scholar
     

  • Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anest Analg. 2018;126(5):1763.

    Article 

    Google Scholar
     

  • Ickx G, Hatem SM, Riquelme I, Friel KM, Henne C, Araneda R, et al. Impairments of visuospatial attention in children with unilateral spastic cerebral palsy. Neural Plast. 2018;2018:1435808.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decraene L, Orban de Xivry J-J, Kleeren L, Crotti M, Verheyden G, Ortibus E, et al. In-depth quantification of bimanual coordination using the Kinarm exoskeleton robot in children with unilateral cerebral palsy. J NeuroEng Rehabil. 2023;20(1):154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maki Y, Wong KF, Sugiura M, Ozaki T, Sadato N. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data. Neuroimage. 2008;42(4):1295–304.

    Article 
    PubMed 

    Google Scholar
     

  • Aramaki Y, Osu R, Sadato N. Resource-demanding versus cost-effective bimanual interaction in the brain. Exp Brain Res. 2010;203(2):407–18.

    Article 
    PubMed 

    Google Scholar
     

  • Gooijers J, Swinnen SP. Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci Biobehav Rev. 2014;43:1–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hung Y-C, Robert MT, Friel KM, Gordon AM. Relationship between integrity of the corpus callosum and bimanual coordination in children with unilateral spastic cerebral palsy. Front Hum Neurosci. 2019;13:334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgopoulos AP, Carpenter AF. Coding of movements in the motor cortex. Curr Opin Neurobiol. 2015;33:34–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byblow WD, Stinear CM, Smith MC, Bjerre L, Flaskager BK, McCambridge AB. Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PLoS ONE. 2012;7(3): e33882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghasia F, Brunstrom J, Gordon M, Tychsen L. Frequency and severity of visual sensory and motor deficits in children with cerebral palsy: gross motor function classification scale. Invest Ophthalmol Vis Sci. 2008;49(2):572–80.

    Article 
    PubMed 

    Google Scholar
     

  • Brun C, Traverse É, Granger É, Mercier C. Somatosensory deficits and neural correlates in cerebral palsy: a scoping review. Dev Med Child Neurol. 2021;63(12):1382–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24(2):178–87.

    Article 
    PubMed 

    Google Scholar
     



  • Source link