Scientific Papers

Epidermal stem cells: skin surveillance and clinical perspective | Journal of Translational Medicine


  • Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10(3):207–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20(8):847–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solanas G, Benitah SA. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol. 2013;14(11):737–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019;21(1):18–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watt FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science. 2014;346(6212):937–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzales KAU, Fuchs E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell. 2017;43(4):387–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanley JR. Synergy of understanding dermatologic disease and epidermal biology. J Clin Invest. 2012;122(2):436–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastushenko I, Prieto-Torres L, Gilaberte Y, Blanpain C. Skin stem cells: at the frontier between the laboratory and clinical practice. Part 1: epidermal stem cells. Actas Dermosifiliogr. 2015;106(9):725–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437(7056):275–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damen M, Wirtz L, Soroka E, Khatif H, Kukat C, Simons BD, et al. High proliferation and delamination during skin epidermal stratification. Nat Commun. 2021;12(1):3227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature. 2007;446(7132):185–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mascré G, Dekoninck S, Drogat B, Youssef KK, Broheé S, Sotiropoulou PA, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489(7415):257–62.

    Article 
    PubMed 

    Google Scholar
     

  • Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, et al. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics. Cell Rep. 2020;30(11):3932-3947.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Drummond ML, Guerrero-Juarez CF, Tarapore E, MacLean AL, Stabell AR, et al. Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nat Commun. 2020;11(1):4239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh R. Basal cells in the epidermis and epidermal differentiation. Stem Cell Rev Rep. 2022;18(6):1883–91.

    Article 
    PubMed 

    Google Scholar
     

  • Roy E, Neufeld Z, Cerone L, Wong HY, Hodgson S, Livet J, et al. Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling. Embo j. 2016;35(24):2658–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cockburn K, Annusver K, Gonzalez DG, Ganesan S, May DP, Mesa KR, et al. Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer. Nat Cell Biol. 2022;24(12):1692–700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CL, Huang WY, Wang EHC, Tai KY, Lin SJ. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci. 2020;27(1):43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson A, Nair LS. Hair follicle stem cells for tissue regeneration. Tissue Eng Part B Rev. 2022;28(4):695–706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs E. Scratching the surface of skin development. Nature. 2007;445(7130):834–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118(5):635–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327(5971):1385–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita R, Sanzen N, Sasaki H, Hayashi T, Umeda M, Yoshimura M, et al. Tracing the origin of hair follicle stem cells. Nature. 2021;594(7864):547–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Yu Y, Liu C, Zhang X, Zhu P, Peng Y, et al. Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov. 2022;8(1):49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steingrímsson E, Copeland NG, Jenkins NA. Melanocyte stem cell maintenance and hair graying. Cell. 2005;121(1):9–12.

    Article 
    PubMed 

    Google Scholar
     

  • Sun Q, Lee W, Hu H, Ogawa T, De Leon S, Katehis I, et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature. 2023;616(7958):774–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Ramos R, Phan AQ, Yamaga K, Flesher JL, Jiang S, et al. Signalling by senescent melanocytes hyperactivates hair growth. Nature. 2023;618(7966):808–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen R, Zhu Z, Ji S, Geng Z, Hou Q, Sun X, et al. Sweat gland regeneration: current strategies and future opportunities. Biomaterials. 2020;255:120201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012;150(1):136–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankawa R, Goldberger N, Yosefzon Y, Koren E, Yusupova M, Rosner D, et al. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev Cell. 2021;56(13):1900-1916.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell. 2011;144(4):577–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs E, Blau HM. Tissue stem cells: architects of their niches. Cell Stem Cell. 2020;27(4):532–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science. 2020;367(6474):161–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martino P, Sunkara R, Heitman N, Rangl M, Brown A, Saxena N, et al. Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol. 2023;25(2):222–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SM, et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell. 2020;182(3):578-593.e19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biltz RG, Sawicki CM, Sheridan JF, Godbout JP. The neuroimmunology of social-stress-induced sensitization. Nat Immunol. 2022;23(11):1527–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577(7792):676–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rachmin I, Lee JH, Zhang B, Sefton J, Jung I, Lee YI, et al. Stress-associated ectopic differentiation of melanocyte stem cells and ORS amelanotic melanocytes in an ex vivo human hair follicle model. Exp Dermatol. 2021;30(4):578–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldschen L, Ellrodt J, Amonoo HL, Feldman CH, Case SM, Koenen KC, et al. The link between post-traumatic stress disorder and systemic lupus erythematosus. Brain Behav Immun. 2023;108:292–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi S, Zhang B, Ma S, Gonzalez-Celeiro M, Stein D, Jin X, et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature. 2021;592(7854):428–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Hu X, Liang Y, Yu J, Li H, Shokhirev MN, et al. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat Immunol. 2022;23(7):1086–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider KM, Blank N, Alvarez Y, Thum K, Lundgren P, Litichevskiy L, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell. 2023;186(13):2823-2838.e20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet. 2022;23(10):624–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell. 2001;104(4):605–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Y, Chen D, Jiang K, Song L, Qian N, Du Y, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell. 2022;29(1):70-85.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15(12):825–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei M, Yang L, Chuong CM. Getting to the core of the dermal papilla. J Invest Dermatol. 2017;137(11):2250–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirby TJ, Lammerding J. Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol. 2018;20(4):373–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang C, Javed A, Kaiser L, Nava MM, Xu R, Brandt DT, et al. Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun. 2021;12(1):1308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedov E, Koren E, Chopra S, Ankawa R, Yosefzon Y, Yusupova M, et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat Cell Biol. 2022;24(7):1049–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aragona M, Sifrim A, Malfait M, Song Y, Van Herck J, Dekoninck S, et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature. 2020;584(7820):268–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue Y, Lyu C, Taylor A, Van Ee A, Kiemen A, Choi Y, et al. Mechanical tension mobilizes Lgr6(+) epidermal stem cells to drive skin growth. Sci Adv. 2022;8(17):eabl8698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carley E, Stewart RM, Zieman A, Jalilian I, King DE, Zubek A, et al. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. Elife. 2021;1010:e58541.

    Article 

    Google Scholar
     

  • Ning W, Muroyama A, Li H, Lechler T. Differentiated daughter cells regulate stem cell proliferation and fate through intra-tissue tension. Cell Stem Cell. 2021;28(3):436-452.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Zhou X, Zhou S, Wang M, Jiang J, Wu W, et al. Mechanical force drives the initial mesenchymal-epithelial interaction during skin organoid development. Theranostics. 2023;13(9):2930–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med. 2022;28(2):97–109.

    Article 
    PubMed 

    Google Scholar
     

  • Doles J, Storer M, Cozzuto L, Roma G, Keyes WM. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 2012;26(19):2144–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dos Santos M, Michopoulou A, André-Frei V, Boulesteix S, Guicher C, Dayan G, et al. Perlecan expression influences the keratin 15-positive cell population fate in the epidermis of aging skin. Aging (Albany NY). 2016;8(4):751–68.

    Article 
    PubMed 

    Google Scholar
     

  • Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7(2):250–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep. 2023;56(1):2–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A. 2007;104(24):10063–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiwari RL, Mishra P, Martin N, George NO, Sakk V, Soller K, et al. A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging (Albany NY). 2021;13(4):4778–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Tang X, Zhang S, Jin M, Wang M, Deng Z, et al. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. Embo j. 2020;39(18):e104365.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Ho C, Wen D, Sun J, Huang L, Gao Y, et al. Targeting the stem cell niche: role of collagen XVII in skin aging and wound repair. Theranostics. 2022;12(15):6446–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu N, Matsumura H, Kato T, Ichinose S, Takada A, Namiki T, et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature. 2019;568(7752):344–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351(6273):aad4395.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Wang D, Wang J, Wang L, Qiu W, Kume T, et al. Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nat Aging. 2021;1(10):889–903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge Y, Miao Y, Gur-Cohen S, Gomez N, Yang H, Nikolova M, et al. The aging skin microenvironment dictates stem cell behavior. Proc Natl Acad Sci U S A. 2020;117(10):5339–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichijo R, Maki K, Kabata M, Murata T, Nagasaka A, Ishihara S, et al. Vasculature atrophy causes a stiffened microenvironment that augments epidermal stem cell differentiation in aged skin. Nat Aging. 2022;2(7):592–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koester J, Miroshnikova YA, Ghatak S, Chacón-Martínez CA, Morgner J, Li X, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23(7):771–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin W, Rosin NL, Sparks H, Sinha S, Rahmani W, Sharma N, et al. Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss. Dev Cell. 2020;53(2):185-198.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iriyama S, Yasuda M, Nishikawa S, Takai E, Hosoi J, Amano S. Decrease of laminin-511 in the basement membrane due to photoaging reduces epidermal stem/progenitor cells. Sci Rep. 2020;10(1):12592.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Z, Long X, Zhao Q, Zheng Y, Song M, Ma S, et al. A single-cell transcriptomic atlas of human skin aging. Dev Cell. 2021;56(3):383-397.e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CC, Murray PJ, Jiang TX, Plikus MV, Chang YT, Lee OK, et al. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J Invest Dermatol. 2014;134(8):2086–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen B, Duan J, Karri SS. How and why the circadian clock regulates proliferation of adult epithelial stem cells. Stem Cells. 2023;41(4):319–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu Y, Wang Y, Chen H, Liu X, Liu J. Overview of the circadian clock in the hair follicle cycle. Biomolecules. 2023. https://doi.org/10.3390/biom13071068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitah SA, Welz PS. Circadian regulation of adult stem cell homeostasis and aging. Cell Stem Cell. 2020;26(6):817–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geyfman M, Kumar V, Liu Q, Ruiz R, Gordon W, Espitia F, et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci U S A. 2012;109(29):11758–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V, et al. Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep. 2017;20(5):1061–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silveira EJD, Nascimento Filho CHV, Yujra VQ, Webber LP, Castilho RM, Squarize CH. BMAL1 modulates epidermal healing in a process involving the antioxidative defense mechanism. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21030901.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, Serrano L, et al. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell. 2013;13(6):745–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang TH, Lindsey-Boltz LA, Reardon JT, Sancar A. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci U S A. 2010;107(11):4890–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan SM, Chang YT, Chen CL, Wang WH, Pan MK, Chen WP, et al. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway. Proc Natl Acad Sci U S A. 2018;115(29):E6880-e6889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welz PS, Zinna VM, Symeonidi A, Koronowski KB, Kinouchi K, Smith JG, et al. BMAL1-driven tissue clocks respond independently to light to maintain homeostasis. Cell. 2019;177(6):1436-1447.e12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature. 2011;480(7376):209–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome? Drug Discov Ther. 2020;14(5):259–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veltri A, Lang CMR, Cangiotti G, Chan CK, Lien WH. ROR2 regulates self-renewal and maintenance of hair follicle stem cells. Nat Commun. 2022;13(1):4449.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res. 2020;15(9):1580–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15(1):1647–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411(6835):349–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther. 2021;12(1):453.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morinaga H, Mohri Y, Grachtchouk M, Asakawa K, Matsumura H, Oshima M, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature. 2021;595(7866):266–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang GY, Wang J, Mancianti ML, Epstein EH Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell. 2011;19(1):114–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin MH, Leimeister C, Gessler M, Kopan R. Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development. 2000;127(11):2421–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Z, Xie Y, Huang H, Jiang K, Zhou B, Wang F, et al. Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells. Elife. 2020;9:e52712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam RC, Yang H, Ge Y, Lien WH, Wang P, Zhao Y, et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell. 2018;22(3):398-413.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Infarinato NR, Stewart KS, Yang Y, Gomez NC, Pasolli HA, Hidalgo L, et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev. 2020;34(23–24):1713–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163(3):609–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Bian R, Wang F, Wang Y, Li X, Guo Y, et al. GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling. Stem Cell Res Ther. 2021;12(1):42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner RN, Piñón Hofbauer J, Wally V, Kofler B, Schmuth M, De Rosa L, et al. Epigenetic and metabolic regulation of epidermal homeostasis. Exp Dermatol. 2021;30(8):1009–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito K, Ito K. Metabolism and the control of cell fate decisions and stem cell renewal. Annu Rev Cell Dev Biol. 2016;32:399–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2012;227(2):421–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim CS, Ding X, Allmeroth K, Biggs LC, Kolenc OI, L’Hoest N, et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle. Cell Metab. 2020;32(4):629-642 e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang G, Sweren E, Andrews W, Li Y, Chen J, Xue Y, et al. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism. Sci Adv. 2023;9(1):eabo7555.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vietri Rudan M, Mishra A, Klose C, Eggert US, Watt FM. Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proc Natl Acad Sci U S A. 2020;117(36):22173–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White AC, Lowry WE. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol. 2015;25(1):11–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baksh SC, Todorova PK, Gur-Cohen S, Hurwitz B, Ge Y, Novak JSS, et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat Cell Biol. 2020;22(7):779–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, et al. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science. 2024;383(6687):eadi7342.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JH, Choi S. Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Exp Mol Med. 2024;56(1):110–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Hur YH, Cai X, Cong Q, Yang Y, Xu C, et al. A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell. 2023;186(10):2127-2143 e22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng D, Zhu X, Yan S, Shi L, Liu Z, Zhou X, et al. New insights into inflammatory memory of epidermal stem cells. Front Immunol. 2023;14:1188559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther. 2020;11(1):232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Chen H, Chen Q, Qiu J, Qahar M, Fan Z, et al. Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflamm Regen. 2023;43(1):14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villarreal-Ponce A, Tiruneh MW, Lee J, Guerrero-Juarez CF, Kuhn J, David JA, et al. Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair. Cell Rep. 2020;33(8):108417.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther. 2019;10(1):229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:344–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt JR, Zeng WZ, Evans EL, Woo SH, Ma S, Abuwarda H, et al. Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing. Elife. 2021;10:e65415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roshan A, Murai K, Fowler J, Simons BD, Nikolaidou-Neokosmidou V, Jones PH. Human keratinocytes have two interconvertible modes of proliferation. Nat Cell Biol. 2016;18(2):145–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun X, Joost S, Kasper M. Plasticity of Epithelial Cells during Skin Wound Healing. Cold Spring Harb Perspect Biol. 2023;15(5):a041232.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joost S, Jacob T, Sun X, Annusver K, La Manno G, Sur I, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing. Cell Rep. 2018;25(3):585-597.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam RC, Yang H, Ge Y, Infarinato NR, Gur-Cohen S, Miao Y, et al. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat Cell Biol. 2020;22(6):640–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H, Verma A, et al. Stem cell lineage infidelity drives wound repair and cancer. Cell. 2017;169(4):636-650.e14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales KAU, Polak L, Matos I, Tierney MT, Gola A, Wong E, et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science. 2021;374(6571):eabh2444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang S, Hu Z, Wang P, Zhang Y, Cao X, Dong Y, et al. Rat epidermal stem cells promote the angiogenesis of full-thickness wounds. Stem Cell Res Ther. 2020;11(1):344.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Yang S, Zeng Y, Tang Z, Zong X, Li X, et al. Dysregulated behaviour of hair follicle stem cells triggers alopecia and provides potential therapeutic targets. Exp Dermatol. 2022;31(7):986–92.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng W, Xu CH. Innovative approaches and advances for hair follicle regeneration. ACS Biomater Sci Eng. 2023;9(5):2251–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harries M, Hardman J, Chaudhry I, Poblet E, Paus R. Profiling the human hair follicle immune system in lichen planopilaris and frontal fibrosing alopecia: can macrophage polarization differentiate these two conditions microscopically? Br J Dermatol. 2020;183(3):537–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rongioletti F, Christana K. Cicatricial (scarring) alopecias: an overview of pathogenesis, classification, diagnosis, and treatment. Am J Clin Dermatol. 2012;13(4):247–60.

    Article 
    PubMed 

    Google Scholar
     

  • Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet. 2021;397(10281):1301–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, et al. ΔNp63 regulates homeostasis, stemness, and suppression of inflammation in the adult epidermis. J Invest Dermatol. 2024;144(1):73-83.e10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gago-Lopez N, Mellor LF, Megías D, Martín-Serrano G, Izeta A, Jimenez F, et al. Role of bulge epidermal stem cells and TSLP signaling in psoriasis. EMBO Mol Med. 2019;11(11):e10697.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustin I, Gross J, Baumann D, Korn C, Kerr G, Grigoryan T, et al. Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis. J Exp Med. 2013;210(9):1761–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amberg N, Holcmann M, Stulnig G, Sibilia M. Effects of imiquimod on hair follicle stem cells and hair cycle progression. J Invest Dermatol. 2016;136(11):2140–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen SB, Cowley CJ, Sajjath SM, Barrows D, Yang Y, Carroll TS, et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell. 2021;28(10):1758-1774.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature. 2017;550(7677):475–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niec RE, Rudensky AY, Fuchs E. Inflammatory adaptation in barrier tissues. Cell. 2021;184(13):3361–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Refu K, Goodfield M. Hair follicle stem cells in the pathogenesis of the scarring process in cutaneous lupus erythematosus. Autoimmun Rev. 2009;8(6):474–7.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Refu K, Edward S, Ingham E, Goodfield M. Expression of hair follicle stem cells detected by cytokeratin 15 stain: implications for pathogenesis of the scarring process in cutaneous lupus erythematosus. Br J Dermatol. 2009;160(6):1188–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matusiak Ł. Profound consequences of hidradenitis suppurativa: a review. Br J Dermatol. 2020;183(6):e171–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orvain C, Lin YL, Jean-Louis F, Hocini H, Hersant B, Bennasser Y, et al. Hair follicle stem cell replication stress drives IFI16/STING-dependent inflammation in hidradenitis suppurativa. J Clin Invest. 2020;130(7):3777–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, et al. Melanocyte-keratinocyte cross-talk in vitiligo. Front Med (Lausanne). 2023;10:1176781.

    Article 
    PubMed 

    Google Scholar
     

  • Boukhedouni N, Martins C, Darrigade AS, Drullion C, Rambert J, Barrault C, et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight. 2020;5(11):e133772.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs D, Bastonini E, Briganti S, Ottaviani M, D’Arino A, Truglio M, et al. Altered epidermal proliferation, differentiation, and lipid composition: novel key elements in the vitiligo puzzle. Sci Adv. 2022;8(35):eabn9299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banks-Schlegel S, Green H. Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplantation. 1980;29(4):308–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975;6(3):317–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hynds RE, Bonfanti P, Janes SM. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol Med. 2018;10(2):139–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Wu P, Huang J, Liu W, Qian H, Sun Y, et al. Skin cell-derived extracellular vesicles: a promising therapeutic strategy for cutaneous injury. Burns Trauma. 2022;10:tkac037.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol. 2020;881:173197.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, et al. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther. 2020;11(1):407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311(5986):560–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Wang X, Liu J, Cai T, Guo L, Wang S, et al. Hair follicle and sebaceous gland de novo regeneration with cultured epidermal stem cells and skin-derived precursors. Stem Cells Transl Med. 2016;5(12):1695–706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature. 2020;582(7812):399–404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiee A, Sun J, Ahmed IA, Phua F, Rossi GR, Lin CY, et al. Development of physiologically relevant skin organoids from human induced pluripotent stem cells. Small. 2024;20(16):e2304879.

    Article 
    PubMed 

    Google Scholar
     

  • Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, et al. Short-term treatment with rho-associated kinase inhibitor preserves keratinocyte stem cell characteristics in vitro. Cells. 2023. https://doi.org/10.3390/cells12030346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen P, Miao Y, Zhang F, Huang J, Chen Y, Fan Z, et al. Nanoscale microenvironment engineering based on layer-by-layer self-assembly to regulate hair follicle stem cell fate for regenerative medicine. Theranostics. 2020;10(25):11673–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong ZX, Zhu ST, Li H, Luo JZ, Yang Y, An Y, et al. Bioengineered skin organoids: from development to applications. Mil Med Res. 2023;10(1):40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, et al. 3D bioprinting using stem cells. Pediatr Res. 2018;83(1–2):223–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Yang S, Zhao J, Hu X, Chen X, Wang J, et al. Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Res Ther. 2020;11(1):303.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Wang J, Zhang J, Huang J, Luo L, Yang Y, et al. Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio. 2022;16:100334.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Dang Z, Liu M, Guo D, Luo R, Zhang M, et al. Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflamm Regen. 2023;43(1):22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirose T, Kotoku J, Toki F, Nishimura EK, Nanba D. Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking. Stem Cells. 2021;39(8):1091–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Li X, Wang Y, Guo Y, Huang Y, Lv D, et al. Stability and biosafety of human epidermal stem cell for wound repair: preclinical evaluation. Stem Cell Res Ther. 2023;14(1):4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Xu H, Yang H, Zhang Y, Wang X, Wang P, et al. Single-stage transplantation combined with epidermal stem cells promotes the survival of tissue-engineered skin by inducing early angiogenesis. Stem Cell Res Ther. 2023;14(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak S, Song CL, Lee J, Kim S, Nam S, Park YJ, et al. Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials. 2024;307:122522.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng L, Ma J, Lv L, Wang W, Gao D, Zhu Y, et al. Both Wnt signaling and epidermal stem cell-derived extracellular vesicles are involved in epidermal cell growth. Stem Cell Res Ther. 2020;11(1):415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niti A, Koliakos G, Michopoulou A. Stem cell therapies for epidermolysis bullosa treatment. Bioengineering (Basel). 2023;10(4):422.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to advanced therapies for epidermolysis bullosa. Cold Spring Harb Perspect Biol. 2023;15(4):a041229.

    Article 
    PubMed 

    Google Scholar
     

  • De Rosa L, Enzo E, Zardi G, Bodemer C, Magnoni C, Schneider H, et al. Hologene 5: a phase II/III clinical trial of combined cell and gene therapy of junctional epidermolysis bullosa. Front Genet. 2021;12:705019.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551(7680):327–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C, et al. Transgenic epidermal cultures for junctional epidermolysis bullosa—5-year outcomes. N Engl J Med. 2021;385(24):2264–70.

    Article 
    PubMed 

    Google Scholar
     

  • De Rosa L, Secone Seconetti A, De Santis G, Pellacani G, Hirsch T, Rothoeft T, et al. Laminin 332-dependent YAP dysregulation depletes epidermal stem cells in junctional epidermolysis bullosa. Cell Rep. 2019;27(7):2036-2049.e6.

    Article 
    PubMed 

    Google Scholar
     

  • Eichstadt S, Barriga M, Ponakala A, Teng C, Nguyen NT, Siprashvili Z, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4(19).

  • Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316(17):1808–17.

    Article 
    PubMed 

    Google Scholar
     

  • Kocher T, Bischof J, Haas SA, March OP, Liemberger B, Hainzl S, et al. A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids. 2021;25:237–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Keeffe Ahern J, Lara-Sáez I, Zhou D, Murillas R, Bonafont J, Mencía Á, et al. Non-viral delivery of CRISPR-Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Ther. 2022;29(3–4):157–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattaneo C, Enzo E, De Rosa L, Sercia L, Consiglio F, Forcato M, et al. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells. Mol Ther. 2024;32(2):372–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawakami T. Surgical procedures and innovative approaches for vitiligo regenerative treatment and melanocytorrhagy. J Dermatol. 2022;49(4):391–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falabella R, Escobar C, Borrero I. Treatment of refractory and stable vitiligo by transplantation of in vitro cultured epidermal autografts bearing melanocytes. J Am Acad Dermatol. 1992;26(2 Pt 1):230–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Zawahry BM, Zaki NS, Bassiouny DA, Sobhi RM, Zaghloul A, Khorshied MM, et al. Autologous melanocyte-keratinocyte suspension in the treatment of vitiligo. J Eur Acad Dermatol Venereol. 2011;25(2):215–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komen L, Vrijman C, Tjin EP, Krebbers G, de Rie MA, Luiten RM, et al. Autologous cell suspension transplantation using a cell extraction device in segmental vitiligo and piebaldism patients: a randomized controlled pilot study. J Am Acad Dermatol. 2015;73(1):170–2.

    Article 
    PubMed 

    Google Scholar
     

  • Razmi TM, Kumar R, Rani S, Kumaran SM, Tanwar S, Parsad D. Combination of follicular and epidermal cell suspension as a novel surgical approach in difficult-to-treat vitiligo: a randomized clinical trial. JAMA Dermatol. 2018;154(3):301–8.

    Article 

    Google Scholar
     

  • Jensen KB, Driskell RR, Watt FM. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc. 2010;5(5):898–911.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Xu X, Tiwari M, Chen Y, Fuller M, Bansal V, et al. SPT6 promotes epidermal differentiation and blockade of an intestinal-like phenotype through control of transcriptional elongation. Nat Commun. 2021;12(1):784.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Zheng Y, Burrows M, Liu S, Wei Z, Nace A, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat Commun. 2014;5:3071.

    Article 
    PubMed 

    Google Scholar
     

  • Hu Z, Chen Y, Gao M, Chi X, He Y, Zhang C, et al. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Prolif. 2023;56(1):e13320.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73(4):713–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Poojan S, Verma V, Verma MK, Lohani M. Rapid isolation of integrin rich multipotent stem cell pool and reconstruction of mouse epidermis equivalent. Am J Stem Cells. 2014;3(1):27–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghio SC, Barbier MA, Doucet EJ, Debbah I, Safoine M, Le-Bel G, et al. A newly developed chemically defined serum-free medium suitable for human primary keratinocyte culture and tissue engineering applications. Int J Mol Sci. 2023;24(3):1821.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano S, Kageyama T, Yamanouchi M, Yan L, Suzuki K, Ebisawa K, et al. Expansion culture of hair follicle stem cells through uniform aggregation in microwell array devices. ACS Biomater Sci Eng. 2023;9(3):1510–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development. 2003;130(21):5241–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61(7):1329–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May D, Yun S, Gonzalez DG, Park S, Chen Y, Lathrop E, et al. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. Elife. 2023;12:e83444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656):359–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Kuri P, Aubert Y, Brewster M, Li N, Farrelly O, et al. Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization. Cell Stem Cell. 2021;28(9):1582-1596.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012;148(1–2):33–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinnant T, Lechler T. Hair follicle stem cells feel the pressure. Cell Stem Cell. 2022;29(1):1–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A. Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A. 2011;108(46):18790–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Gomez N, Infarinato N, Adam RC, Sribour M, Baek I, et al. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nat Cell Biol. 2023;25(8):1185–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Jiang TX, Hughes MW, Wu P, Yu J, Widelitz RB, et al. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J Invest Dermatol. 2012;132(12):2681–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen I, Bar C, Liu H, Valdes VJ, Zhao D, Galbo PM Jr, et al. Polycomb complexes redundantly maintain epidermal stem cell identity during development. Genes Dev. 2021;35(5–6):354–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia X, Cao G, Sun G, Zhu L, Tian Y, Song Y, et al. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J Clin Invest. 2020;130(10):5180–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells. 2020;38(2):301–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40(11):1291–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JK, Wiedemann J, Nguyen L, Lin Z, Tahir M, Hui CC, et al. IRX5 promotes DNA damage repair and activation of hair follicle stem cells. Stem Cell Reports. 2023;18(5):1227–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren X, Xia W, Xu P, Shen H, Dai X, Liu M, et al. Lgr4 deletion delays the hair cycle and inhibits the activation of hair follicle stem cells. J Invest Dermatol. 2020;140(9):1706-171 e24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Chen Y, Tiwari M, Bansal V, Sen GL. Regulation of integrin and extracellular matrix genes by HNRNPL is necessary for epidermal renewal. PLoS Biol. 2021;19(9):e3001378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Chen Y, Xu X, Jones J, Tiwari M, Ling J, et al. HNRNPK maintains epidermal progenitor function through transcription of proliferation genes and degrading differentiation promoting mRNAs. Nat Commun. 2019;10(1):4198.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polito MP, Marini G, Fabrizi A, Sercia L, Enzo E, De Luca M. Biochemical role of FOXM1-dependent histone linker H1B in human epidermal stem cells. Cell Death Dis. 2024;15(7):508.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Su P, Li Y, Hoover A, Hu S, King SA, et al. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev Cell. 2024.

  • Pickup ME, Hu A, Patel HJ, Ahmed MI. MicroRNA-148a controls epidermal and hair follicle stem/progenitor cells by modulating the activities of ROCK1 and ELF5. J Invest Dermatol. 2023;143(3):480–4915.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Jin S, Chen J, Li Z, Lin Z, Tang L, et al. Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nat Commun. 2020;11(1):5434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiratsuka T, Bordeu I, Pruessner G, Watt FM. Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proc Natl Acad Sci U S A. 2020;117(30):17796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Zhang X, Peng Y, Zhang L, Yu Y, Hua P, et al. miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Rep. 2021;35(10):109225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, et al. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol. 2021. https://doi.org/10.1083/jcb.201908178.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Siegenthaler JA, Dowell RD, Yi R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science. 2016;351(6273):613–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lien WH, Polak L, Lin M, Lay K, Zheng D, Fuchs E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol. 2014;16(2):179–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link