Scientific Papers

Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing | Stem Cell Research & Therapy


  • Aghayan HR, Hosseini MS, Gholami M, Mohamadi-Jahani F, Tayanloo-Beik A, Alavi-Moghadam S, et al. Mesenchymal stem cells’ seeded amniotic membrane as a tissue-engineered dressing for wound healing. Drug Deliv Transl Res. 2022;12(3):538–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta S, Rameshbabu AP, Bankoti K, Maity PP, Das D, Pal S, et al. Oleoyl-chitosan-based nanofiber mats impregnated with amniotic membrane derived stem cells for accelerated full-thickness excisional wound healing. ACS Biomater Sci Eng. 2017;3(8):1738–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019;216: 119267.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12(8).

  • Miguel SP, Sequeira RS, Moreira AF, Cabral CSD, Mendonça AG, Ferreira P, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm. 2019;139:1–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in prevalence of diabetes in Asian countries. World J Diabetes. 2012;3(6):110–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong DG, Wrobel J, Robbins JM. Guest editorial: are diabetes-related wounds and amputations worse than cancer? Int Wound J. 2007;4(4):286–7.

    Article 
    PubMed 

    Google Scholar
     

  • Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10(3).

  • Gordon AJ, Alfonso AR, Nicholson J, Chiu ES. Evidence for healing diabetic foot ulcers with biologic skin substitutes: a systematic review and meta-analysis. Ann Plast Surg. 2019;83(4 Suppl):31–44.

    Article 

    Google Scholar
     

  • Vyas KS, Vasconez HC. Wound healing: biologics, skin substitutes. Biomembranes Scaffolds Healthcare (Basel). 2014;2(3):356–400.

    PubMed 

    Google Scholar
     

  • Tavakoli S, Klar AS. Bioengineered skin substitutes: Advances and future trends. Appl Sci. 2021;11(4):1493.

    Article 
    CAS 

    Google Scholar
     

  • Du S, Zeugolis DI, O’Brien T. Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds. Stem Cell Res Ther. 2022;13(1):426.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. Cambridge, MA: StemBook; 2008.


    Google Scholar
     

  • Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci. 2016;17(12):1974.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1(1):15.

    Article 
    CAS 

    Google Scholar
     

  • Amani M, Rakhshani A, Maghsoudian S, Rasoulzadehzali M, Yoosefi S, Keihankhadiv S, et al. pH-sensitive bilayer electrospun nanofibers based on ethyl cellulose and Eudragit S-100 as a dual delivery system for treatment of the burn wounds; preparation, characterizations, and in-vitro/in-vivo assessment. Int J Biol Macromol. 2023;249: 126705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013;8:337–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mousivand Z, Ayazi H, Abdollahi A, Akbari H, Raoufi M, Sharifikolouei E. Hybrid electrospun scaffold loaded with Argireline acetate and Dexpanthenol for skin regeneration. Int J Polym Mater Polym Biomater. 2022:1–12.

  • Raoufi M, Das T, Schoen I, Vogel V, Brüggemann D, Spatz JP. Nanopore diameters tune strain in extruded fibronectin fibers. Nano Lett. 2015;15(10):6357–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atashgah RB, Ghasemi A, Raoufi M, Abdollahifar MA, Zanganeh S, Nejadnik H, et al. Restoring endogenous repair mechanisms to heal chronic wounds with a multifunctional wound dressing. Mol Pharm. 2021;18(8):3171–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci. 2019;20(23).

  • Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdollahi A, Malek-Khatabi A, Razavi MS, Sheikhi M, Abbaspour K, Rezagholi Z, et al. The recent advancement in the chitosan-based thermosensitive hydrogel for tissue regeneration. J Drug Deliv Sci Technol. 2023:104627.

  • Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T. Hyaluronic acid in inflammation and tissue regeneration. Wounds. 2016;28(3):78–88.

    PubMed 

    Google Scholar
     

  • Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering. 2021;8(5):63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen-sources and applications. Molecules. 2019;24(22).

  • Bagheri Miyab K, Alipoor E, Vaghardoost R, Saberi Isfeedvajani M, Yaseri M, Djafarian K, et al. The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial. Burns. 2020;46(1):156–63.

    Article 
    PubMed 

    Google Scholar
     

  • Holmes C, Wrobel JS, Maceachern MP, Boles BR. Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: a systematic review. Diabetes Metab Syndr Obes. 2013;6:17–29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amirrah NI, Mohdrazipwee MF, Tabata Y, Bthjidrus R, Nordin A, Fauzi MB. Antibacterial-integrated collagen wound dressing for diabetes-related foot ulcers: An evidence-based review of clinical studies. Polymers. 2020;12(9):2168.

    Article 
    CAS 

    Google Scholar
     

  • Mbese Z, Alven S, Aderibigbe BA. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers. 2021;13(24):4368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golchin A, Farahany TZ, Khojasteh A, Soleimanifar F, Ardeshirylajimi A. The clinical trials of mesenchymal stem cell therapy in skin diseases: an update and concise review. Curr Stem Cell Res Ther. 2019;14(1):22–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies. Tissue Eng Part B Rev. 2020;26(6):555–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Qu X, Li J, Harada A, Hua Y, Yoshida N, et al. Tissue sheet engineered using human umbilical cord-derived mesenchymal stem cells improves diabetic wound healing. Int J Mol Sci. 2022;23(20).

  • Kühl T, Mezger M, Hausser I, Handgretinger R, Bruckner-Tuderman L, Nyström A. High local concentrations of intradermal MSCs restore skin integrity and facilitate wound healing in dystrophic epidermolysis bullosa. Mol Ther. 2015;23(8):1368–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrova A, Georgiadis C, Fleck RA, Allison L, McGrath JA, Dazzi F, et al. Human mesenchymal stromal cells engineered to express collagen VII can restore anchoring fibrils in recessive dystrophic epidermolysis bullosa skin graft chimeras. J Invest Dermatol. 2020;140(1):121-31.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riedl J, Popp C, Eide C, Ebens C, Tolar J. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment. Cytotherapy. 2021;23(11):961–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee B-C, Kim J-J, Lee JY, Kang I, Shin N, Lee S-E, et al. Disease-specific primed human adult stem cells effectively ameliorate experimental atopic dermatitis in mice. Theranostics. 2019;9(12):3608.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park HH, Lee S, Yu Y, Yoo SM, Baek SY, Jung N, et al. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells. 2020;38(7):904–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin T-H, Lee B-C, Choi SW, Shin J-H, Kang I, Lee JY, et al. Human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis via regulation of B lymphocyte maturation. Oncotarget. 2017;8(1):512.

    Article 
    PubMed 

    Google Scholar
     

  • Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current advanced therapies based on human mesenchymal stem cells for skin diseases. Front Cell Dev Biol. 2021;9: 643125.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol. 2012;26(7):812–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE. 2008;3(4): e1886.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1(2):142–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barba M, Di Taranto G, Lattanzi W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin Biol Ther. 2017;17(6):677–89.

    Article 
    PubMed 

    Google Scholar
     

  • Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun. 2013;438(2):410–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu J, Liu N, Yang X, Feng Z, Qi F. Adiposed-derived stem cells seeded on PLCL/P123 eletrospun nanofibrous scaffold enhance wound healing. Biomed Mater. 2014;9(3): 035012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Álvaro-Afonso FJ, Sanz-Corbalán I, Lázaro-Martínez JL, Kakagia D, Papanas N. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers: a review of preclinical and clinical studies. Angiology. 2020;71(9):853–63.

    Article 
    PubMed 

    Google Scholar
     

  • Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-derived stem cells for regenerative wound healing applications: understanding the clinical and regulatory environment. Aesthet Surg J. 2020;40(7):784–99.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng X, Tang Y, Hu K, Jiao W, Ying L, Zhu L, et al. Three-week topical treatment with placenta-derived mesenchymal stem cells hydrogel in a patient with diabetic foot ulcer: a case report. Medicine (Baltimore). 2017;96(51): e9212.

    Article 
    PubMed 

    Google Scholar
     

  • Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B): 108282.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelekanos RA, Sardesai VS. Human placenta‐derived mesenchymal stem/stromal cells: fetal and maternal origins and critical parameters for ex vivo expansion. Biol Therapeut Appl Mesenchymal Cells. 2016:32–8.

  • Marquardt LM, Heilshorn SC. Design of injectable materials to improve stem cell transplantation. Curr Stem Cell Rep. 2016;2(3):207–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemJournal. 2019;1(1):1–25.

    Article 

    Google Scholar
     

  • Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med. 2015;4(2):156–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioactive Mater. 2019;4:366–79.

    Article 

    Google Scholar
     

  • Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, et al. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther. 2016;7(1):188.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andonegi M, Heras KL, Santos-Vizcaíno E, Igartua M, Hernandez RM, de la Caba K, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr Polym. 2020;237: 116159.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Zhao G. Quantitative characterization of the electrospun gelatin–chitosan nanofibers by coupling scanning electron microscopy and atomic force microscopy. Mater Lett. 2012;79:14–7.

    Article 
    CAS 

    Google Scholar
     

  • Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR. Picoliter water contact angle measurement on polymers. Langmuir. 2007;23(13):6875–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem. 2016;196:560–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care (New Rochelle). 2013;2(7):379–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghayan HR, Payab M, Mohamadi-Jahani F, Aghayan SS, Larijani B, Arjmand B. GMP-compliant production of human placenta-derived mesenchymal stem cells. Methods Mol Biol. 2021;2286:213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aghayan HR, Goodarzi P, Arjmand B. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy. Methods Mol Biol. 2015;1283:93–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydr Polym. 2018;195:356–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharif S, Ai J, Azami M, Verdi J, Atlasi MA, Shirian S, et al. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2018;106(4):1578–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ao H, Xie Y, Tan H, Wu X, Liu G, Qin A, et al. Improved hMSC functions on titanium coatings by type I collagen immobilization. J Biomed Mater Res A. 2014;102(1):204–14.

    Article 
    PubMed 

    Google Scholar
     

  • Delaine-Smith RM, MacNeil S, Reilly GC. Matrix production and collagen structure are enhanced in two types of osteogenic progenitor cells by a simple fluid shear stress stimulus. Eur Cell Mater. 2012;24:162–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Gomez L, Alvarez-Lorenzo C, Concheiro A, Silva M, Dominguez F, Sheikh FA, et al. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Mater Sci Eng, C. 2014;40:180–8.

    Article 
    CAS 

    Google Scholar
     

  • Tolosa L, Donato MT, Gómez-Lechón MJ. General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol. 2015;1250:333–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protocols Pharmacol. 2015;70(1):5–47.

    Article 

    Google Scholar
     

  • Wang X, Ge J, Tredget EE, Wu Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013;8(2):302–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24(26):4833–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lončarević A, Ivanković M, Rogina A. Lysozyme-induced degradation of chitosan: the characterisation of degraded chitosan scaffolds. J Tissue Repair Regen. 2017;1:12–22.


    Google Scholar
     

  • Matica A, Menghiu G, Ostafe V. Biodegradability of chitosan based products. New Front Chem. 2017;26(1).

  • Kurita K, Kaji Y, Mori T, Nishiyama Y. Enzymatic degradation of β-chitin: susceptibility and the influence of deacetylation. Carbohyd Polym. 2000;42(1):19–21.

    Article 
    CAS 

    Google Scholar
     

  • Huang J, Qin J, Zhang P, Chen X, You X, Zhang F, et al. Facile preparation of a strong chitosan-silk biocomposite film. Carbohydr Polym. 2020;229: 115515.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020;9(1):971–89.

    Article 
    CAS 

    Google Scholar
     

  • Kukumberg M, Yao Y, Goh SH, Neo DJ, Yao JY, Yim EK. Evaluation of the topographical influence on the cellular behavior of human umbilical vein endothelial cells. Adv Biosyst. 2018;2(6):1700217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langhe RP, Gudzenko T, Bachmann M, Becker SF, Gonnermann C, Winter C, et al. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion. Nat Commun. 2016;7(1):10909.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maghdouri-White Y, Bowlin GL, Lemmon CA, Dréau D. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin-collagen type I electrospun scaffolds. Mater Sci Eng C Mater Biol Appl. 2014;43:37–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He W, Yong T, Teo WE, Ma Z, Ramakrishna S. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 2005;11(9–10):1574–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. J Morphol Sci 2017;22(2):0-.

  • Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K, et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62(10):751–8.

    Article 
    PubMed 

    Google Scholar
     

  • Lee MH, You C, Kim KH. Combined effect of a microporous layer and Type I collagen coating on a biphasic calcium phosphate scaffold for bone tissue engineering. Materials (Basel). 2015;8(3):1150–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motasadizadeh H, Tavakoli M, Damoogh S, Mottaghitalab F, Gholami M, Atyabi F, et al. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater Adv. 2022;139: 213032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Chen J, Shi M, Zhang H, Ma PX, Guo B. Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem Eng J. 2019;375: 121999.

    Article 
    CAS 

    Google Scholar
     

  • Feng X, Zhang X, Li S, Zheng Y, Shi X, Li F, et al. Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full-thickness wound healing. Int J Biol Macromol. 2020;164:626–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Wang H, Zhang J, Li X, Wu Y, Wei Y, et al. Functional poly (ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater. 2017;54:128–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol. 2019;140:330–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014;7(11):1205–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265.

    Article 

    Google Scholar
     

  • Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng, C. 2015;48:651–62.

    Article 
    CAS 

    Google Scholar
     

  • Zhong S, Zhang Y, Lim C. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscipl Rev Nanomed Nanobiotechnol. 2010;2(5):510–25.

    Article 
    CAS 

    Google Scholar
     

  • Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang HM, Chou YT, Wen ZH, Wang CZ, Chen CH, Ho ML. Novel biodegradable porous scaffold applied to skin regeneration. PLoS ONE. 2013;8(6): e56330.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah R, Stodulka P, Skopalova K, Saha P. Dual crosslinked collagen/chitosan film for potential biomedical applications. Polymers (Basel). 2019;11(12).

  • Hussain SH, Limthongkul B, Humphreys TR. The biomechanical properties of the skin. Dermatol Surg. 2013;39(2):193–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Custódio CA, Alves CM, Reis RL, Mano JF. Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. J Tissue Eng Regen Med. 2010;4(4):316–23.

    Article 
    PubMed 

    Google Scholar
     

  • Ruprai H, Romanazzo S, Ireland J, Kilian K, Mawad D, George L, et al. Porous chitosan films support stem cells and facilitate sutureless tissue repair. ACS Appl Mater Interfaces. 2019;11(36):32613–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aljawish A, Muniglia L, Chevalot I. Growth of human mesenchymal stem cells (MSCs) on films of enzymatically modified chitosan. Biotechnol Prog. 2016;32(2):491–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang PY, Li YL, Fan L, Lin J, Hu QL. Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation. Int J Biol Macromol. 2012;50(3):658–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun M, Yuan L, Yang X, Shao L. Preparation and modification of chitosan-based membrane. ES Mater Manuf. 2020;9(2):40–7.

    CAS 

    Google Scholar
     

  • Luna SM, Silva SS, Gomes ME, Mano JF, Reis RL. Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl. 2011;26(1):101–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park BU, Park SM, Lee KP, Lee SJ, Nam YE, Park HS, et al. Collagen immobilization on ultra-thin nanofiber membrane to promote in vitro endothelial monolayer formation. J Tissue Eng. 2019;10:2041731419887833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, Shafiee A, et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. 2019;6(13):1900572.

    Article 

    Google Scholar
     

  • He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26(36):7606–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Chen X, Cai J, Ye D, Wu Y, Fan L, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem Eng J. 2019;369:253–62.

    Article 
    CAS 

    Google Scholar
     

  • Wu Y-Y, Jiao Y-P, Xiao L-L, Li M-M, Liu H-W, Li S-H, et al. Experimental study on effects of adipose-derived stem cell–seeded silk fibroin chitosan film on wound healing of a diabetic rat model. Ann Plast Surg. 2018;80(5):572.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezvanian M, Ng SF, Alavi T, Ahmad W. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats. Int J Biol Macromol. 2021;171:308–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruna F, Contador D, Conget P, Erranz B, Sossa CL, Arango-Rodríguez ML. Regenerative potential of mesenchymal stromal cells: age-related changes. Stem Cells Int. 2016;2016.

  • Gu C, Huang S, Gao D, Wu Y, Li J, Ma K, et al. Angiogenic effect of mesenchymal stem cells as a therapeutic target for enhancing diabetic wound healing. Int J Low Extrem Wounds. 2014;13(2):88–93.

    Article 
    PubMed 

    Google Scholar
     

  • Kuo Y-R, Wang C-T, Cheng J-T, Kao G-S, Chiang Y-C, Wang C-J. Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant. 2016;25(1):71–81.

    Article 
    PubMed 

    Google Scholar
     

  • Ariyanti AD, Zhang J, Marcelina O, Nugrahaningrum DA, Wang G, Kasim V, et al. Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia. Stem Cells Transl Med. 2019;8(4):404–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YS, Lew DH, Tark KC, Rah DK, Hong JP. Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing. J Korean Med Sci. 2010;25(4):589–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kouhbananinejad SM, Derakhshani A, Vahidi R, Dabiri S, Fatemi A, Armin F, et al. A fibrinous and allogeneic fibroblast-enriched membrane as a biocompatible material can improve diabetic wound healing. Biomater Sci. 2019;7(5):1949–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinke J, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heublein H, Bader A, Giri S. Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds. Drug Discovery Today. 2015;20(6):703–17.

    Article 
    PubMed 

    Google Scholar
     



  • Source link