Scientific Papers

Plasma lipidomics in early APP/PS1 female mouse model and its relationship with brain: Is it affected by the estrous cycle? | Alzheimer’s Research & Therapy


  • Durmugier J, Sabia S. Epidemiology of Alzheimer’s disease: latest trends. Rev Prat. 2020;70:149–51.


    Google Scholar
     

  • World Health Organization. Dementia. 2022 [cited 2022 Oct 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia

  • Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimer’s Dis. 2018;64:1077–83. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-180141.

    Article 

    Google Scholar
     

  • Viña J, Lloret A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis. 2010;20:S527-33. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2010-100501.

    Article 

    Google Scholar
     

  • Mielke MM, Ferretti MT, Iulita MF, Hayden K, Khachaturian AS. Sex and gender in Alzheimer’s disease – Does it matter? Alzheimer’s Dement. 2018;14:1101–3. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.08.003.

    Article 

    Google Scholar
     

  • Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021;17:327–406.

  • Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Varsavsky I, et al. Sex differences in Alzheimer risk. Neurology. 2017;89:1382–90. Available from: https://www.neurology.org/doi/10.1212/WNL.0000000000004425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocca WA, Mielke MM, Vemuri P, Miller VM. Sex and gender differences in the causes of dementia: A narrative review. Maturitas. 2014;79:196–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378512214001601.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauvais-Jarvis F, Arnold AP, Reue K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 2017;25:1216–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413117302863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Aldrete L, Moser MV, Putignano G, Ferretti MT, Schumacher Dimech A, Santuccione Chadha A. Sex and gender considerations in Alzheimer’s disease: The Women’s Brain Project contribution. Front Aging Neurosci. 2023;15. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2023.1105620/full

  • Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. Br J Pharmacol. 2019;176:4107–18. Available from: https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.14539.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhea EM, Banks WA. Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharm Res. 2021;38:1469–75. Available from: https://link.springer.com/10.1007/s11095-021-03098-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16:285–99. Available from: http://journals.sagepub.com/doi/10.3727/000000007783464731.

    Article 
    PubMed 

    Google Scholar
     

  • Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163782709000563.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimer’s Dis. 2017;57:645–65. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160907.

    Article 

    Google Scholar
     

  • Guzman-Martinez L, Maccioni RB, Farías GA, Fuentes P, Navarrete LP. Biomarkers for Alzheimer’s Disease. Curr Alzheimer Res. 2019;16:518–28. Available from: https://www.eurekaselect.com/172184/article.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kao Y-C, Ho P-C, Tu Y-K, Jou I-M, Tsai K-J. Lipids and Alzheimer’s Disease. Int J Mol Sci. 2020;21:1505. Available from: https://www.mdpi.com/1422-0067/21/4/1505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Li L, Meng F, Yu J, He F, Lin Y, et al. Serum metabolites differentiate amnestic mild cognitive impairment from healthy controls and predict early Alzheimer’s disease via untargeted lipidomics analysis. Front Neurol. 2021;12. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2021.704582/full

  • Agarwal M, Khan S. Plasma lipids as biomarkers for Alzheimer’s disease: a systematic review. Cureus. 2020; Available from: https://www.cureus.com/articles/44978-plasma-lipids-as-biomarkers-for-alzheimers-disease-a-systematic-review

  • Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front Physiol. 2020;11. https://www.frontiersin.org/article/10.3389/fphys.2020.00598/full

  • Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88:640–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006295213008083.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Thalamuthu A, Mather KA, Crawford J, Ulanova M, Wong MWK, et al. Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes. Transl Psychiatry. 2021;11:344. Available from: https://www.nature.com/articles/s41398-021-01362-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimer’s Dement. 2017;13:140–51. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2016.08.003.

    Article 

    Google Scholar
     

  • Ferré-González L, Lloret A, Cháfer-Pericás C. Systematic review of brain and blood lipidomics in Alzheimer’s disease mouse models. Prog Lipid Res. 2023;90:101223. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163782723000139.

    Article 
    PubMed 

    Google Scholar
     

  • Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, et al. The association between plasma ceramides and sphingomyelins and risk of Alzheimer’s disease differs by sex and APOE in the Baltimore longitudinal study of aging. Mielke M, Martinez P, editors. J Alzheimer’s Dis. 2017;60:819–28. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160925.

    Article 
    CAS 

    Google Scholar
     

  • Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimer’s Dement. 2017;13:810–27. Available from: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2017.01.008.

    Article 

    Google Scholar
     

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci. 2004;101:2070–5. Available from: https://pnas.org/doi/full/10.1073/pnas.0305799101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Zhou Y, Luo Z, Tang R, Sun Y, He Q, et al. Lipidomic markers for the prediction of progression from mild cognitive impairment to Alzheimer’s disease. FASEB J. 2023;37. Available from: https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202201584RR

  • Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet. 2004;13:159–70. Available from: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddh019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volianskis A, Køstner R, Mølgaard M, Hass S, Jensen MS. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1ΔE9-deleted transgenic mice model of β-amyloidosis. Neurobiol Aging. 2010;31:1173–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458008002844.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLean AC, Valenzuela N, Fai S, Bennett SAL. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. 2012; Available from: https://app.jove.com/t/4389

  • Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Brain areas lipidomics in female transgenic mouse model of Alzheimer’s disease. Sci Rep. 2024;14:870. Available from: https://www.nature.com/articles/s41598-024-51463-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcoriza-Balaguer MI, García-Cañaveras JC, Ripoll-Esteve FJ, Roca M, Lahoz A. LipidMS 3.0: an R-package and a web-based tool for LC-MS/MS data processing and lipid annotation. Borgwardt K, editor. Bioinformatics. 2022;38:4826–8. Available from: https://academic.oup.com/bioinformatics/article/38/20/4826/6675453.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mowbray FI, Fox-Wasylyshyn SM, El-Masri MM. Univariate outliers: a conceptual overview for the nurse researcher. Can J Nurs Res. 2019;51:31–7. Available from: http://journals.sagepub.com/doi/10.1177/0844562118786647.

    Article 
    PubMed 

    Google Scholar
     

  • Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract. 2020;6:5. Available from: https://fertilityresearchandpractice.biomedcentral.com/articles/10.1186/s40738-020-00074-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, et al. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids Health Dis. 2013;12:68. Available from: https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-12-68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang Y, Mishra A, Wang T, Wang Y, Desai M, Chen S, et al. Evidence in support of chromosomal sex influencing plasma based metabolome vs APOE genotype influencing brain metabolome profile in humanized APOE male and female mice. Reddy H, editor. PLoS One. 2020;15:e0225392. Available from: https://doi.org/10.1371/journal.pone.0225392.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullah L, Evans JE, Emmerich T, Crynen G, Shackleton B, Keegan AP, et al. APOE ε4 specific imbalance of arachidonic acid and docosahexaenoic acid in serum phospholipids identifies individuals with preclinical mild cognitive impairment/Alzheimer’s disease. Aging (Albany NY). 2017;9:964–85. Available from: https://www.aging-us.com/lookup/doi/10.18632/aging.101203.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Liu W, Zan J, Wu C, Tan W. Untargeted lipidomics reveals progression of early Alzheimer’s disease in APP/PS1 transgenic mice. Sci Rep. 2020;10:14509. Available from: https://www.nature.com/articles/s41598-020-71510-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • den Hoedt S, Crivelli SM, Leijten FPJ, Losen M, Stevens JAA, Mané-Damas M, et al. Effects of sex, age, and apolipoprotein E genotype on brain ceramides and sphingosine-1-phosphate in Alzheimer’s disease and control mice. Front Aging Neurosci. 2021;13. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2021.765252/full

  • Canhada S, Castro K, Perry IS, Luft VC. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr Neurosci. 2018;21:529–38. Available from: https://www.tandfonline.com/doi/full/10.1080/1028415X.2017.1321813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2012;29:691–7. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2012-110629.

    Article 
    CAS 

    Google Scholar
     

  • Wang D-C, Sun C-H, Liu L-Y, Sun X-H, Jin X-W, Song W-L, et al. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol Aging. 2012;33:1057–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458010003933.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023;290:1420–53. Available from: https://onlinelibrary.wiley.com/doi/10.1111/febs.16344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Fu B, Lei H, Tang H, Wang Y. Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice. Neuroscience. 2016;332:160–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452216302883.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng B, Zhao G, Liu HL. The differential effect of treadmill exercise intensity on hippocampal soluble Aβ and lipid metabolism in APP/PS1 mice. Neuroscience. 2020;430:73–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S030645222030018X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farooqui AA, Horrocks LA, Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J Neurosci Res. 2007;85:1834–50. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jnr.21268.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta – Mol Cell Biol Lipids. 2013;1831:543–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1388198112001874.

    Article 
    CAS 

    Google Scholar
     

  • Pan X, Green BD. Temporal Effects of Neuron-specific beta-secretase 1 (BACE1) Knock-in on the Mouse Brain Metabolome: Implications for Alzheimer’s Disease. Neuroscience. 2019;397:138–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452218307644.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer’s disease by direct infusion mass spectrometry. J Pharm Biomed Anal. 2015;102:425–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708514005007.

    Article 
    PubMed 

    Google Scholar
     

  • Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, et al. The impact of the hAPP695SW transgene and associated Amyloid-β accumulation on murine hippocampal biochemical pathways. J Alzheimer’s Dis. 2022;85:1601–19. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-215084.

    Article 
    CAS 

    Google Scholar
     

  • González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Deciphering metabolic abnormalities associated with Alzheimer’s disease in the APP/PS1 mouse model using integrated metabolomic approaches. Biochimie. 2015;110:119–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300908415000103.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Hu D, Zhao L, Tang W, Li B. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix. Anal Chim Acta. 2022;1192:339337. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003267021011636.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023;290:1420–53. Available from: https://febs.onlinelibrary.wiley.com/doi/10.1111/febs.16344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:740–7. Available from: https://academic.oup.com/jnen/article-lookup/doi/10.1097/00005072-199907000-00008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao N-N, Sun Y-F, Zong L, Liu S, Song F-R, Liu Z-Q, et al. Serum lipidomics study of Ding-Zhi-Xiao-Wan effect on Alzheimer’s disease using online liquid extraction surface analysis coupled to direct infusion mass spectrometry. Int J Mass Spectrom. 2018;434:29–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1387380618301623.

    Article 
    CAS 

    Google Scholar
     

  • Plucińska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield PD, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513–23. Available from: http://link.springer.com/10.1007/s00125-016-3960-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorninger F, Moser AB, Kou J, Wiesinger C, Forss-Petter S, Gleiss A, et al. Alterations in the plasma levels of specific choline phospholipids in Alzheimer’s disease mimic accelerated aging. J Alzheimer’s Dis. 2018;62:841–54. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-171036.

    Article 
    CAS 

    Google Scholar
     

  • de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation. 2019;16:48. Available from: https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-019-1436-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panchal M, Gaudin M, Lazar AN, Salvati E, Rivals I, Ayciriex S, et al. Ceramides and sphingomyelinases in senile plaques. Neurobiol Dis. 2014;65:193–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996114000242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mielke MM, Bandaru VVR, Haughey NJ, Xia J, Fried LP, Yasar S, et al. Serum ceramides increase the risk of Alzheimer disease. Neurology. 2012;79:633–41. Available from: https://www.neurology.org/doi/10.1212/WNL.0b013e318264e380.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kruining D, Losen M, Crivelli SM, de Jong JJA, Jansen JFA, Backes WH, et al. Plasma ceramides relate to mild cognitive impairment in middle‐aged men: The Maastricht Study. Alzheimer’s Dement Diagnosis, Assess Dis Monit. 2023;15. https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12459

  • Peña-Bautista C, Álvarez-Sánchez L, Cañada-Martínez AJ, Baquero M, Cháfer-Pericás C. Epigenomics and lipidomics integration in Alzheimer disease: pathways involved in early stages. Biomedicines. 2021;9:1812. Available from: https://www.mdpi.com/2227-9059/9/12/1812.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakr F, Dyrba M, Bräuer A, Teipel S. Association of lipidomics signatures in blood with clinical progression in preclinical and prodromal Alzheimer’s disease. J Alzheimer’s Dis. 2022;85:1115–27. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-201504.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, Shen X, Xu W, Huang Y, Li H, Tan L, et al. A panel of blood lipids associated with cognitive performance, brain atrophy, and Alzheimer’s diagnosis: A longitudinal study of elders without dementia. Alzheimer’s Dement Diagnosis, Assess Dis Monit. 2020;12. https://onlinelibrary.wiley.com/doi/10.1002/dad2.12041

  • Anand S, Barnes JM, Young SA, Garcia DM, Tolley HD, Kauwe JSK, et al. Discovery and confirmation of diagnostic serum lipid biomarkers for Alzheimer’s disease using direct infusion mass spectrometry. J Alzheimers Dis. 2017;59:277–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28598845.

    CAS 
    PubMed 

    Google Scholar
     

  • Clark C, Dayon L, Masoodi M, Bowman GL, Popp J. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease. Alzheimers Res Ther. 2021;13:71. Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00814-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan X, Nasaruddin MB, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, et al. Alzheimer’s disease–like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging. 2016;38:151–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458015005813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai Y-R, Wang Y-Y, Meng D-L, Shi Z-L, Song X-F, Yang Z-Z, et al. Alterations of fatty acid composition and metabolism in APP/PS1 transgenic mice. Neurosci Lett. 2020;738:135401. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304394020306716.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demarest TG, Varma VR, Estrada D, Babbar M, Basu S, Mahajan UV, et al. Biological sex and DNA repair deficiency drive Alzheimer’s disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathol. 2020;140:25–47. Available from: https://link.springer.com/10.1007/s00401-020-02152-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton LK, Dufresne M, Joppé SE, Petryszyn S, Aumont A, Calon F, et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell. 2015;17:397–411. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1934590915003562.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng P-Y, Tsai Y-H, Lee C-L, Ma Y-K, Kuo T-H. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci. 2023;16. Available from: https://www.frontiersin.org/articles/10.3389/fnmol.2023.1146109/full

  • Levy DR, Hunter N, Lin S, Robinson EM, Gillis W, Conlin EB, et al. Mouse spontaneous behavior reflects individual variation rather than estrous state. Curr Biol. 2023;33:1358-1364.e4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982223001756.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broestl L, Worden K, Moreno AJ, Davis EJ, Wang D, Garay B, et al. Ovarian cycle stages modulate Alzheimer-related cognitive and brain network alterations in female mice. eneuro. 2018;5:ENEURO.0132–17.2018. Available from: https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0132-17.2018

  • Gangitano D, Salas R, Teng Y, Perez E, De Biasi M. Progesterone modulation of α5 nAChR subunits influences anxiety-related behavior during estrus cycle. Genes, Brain Behav. 2009;8:398–406. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1601-183X.2009.00476.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol. 2022;66:101010. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091302222000334.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovick TA, Zangrossi H. Effect of Estrous Cycle on Behavior of Females in Rodent Tests of Anxiety. Front Psychiatry. 2021;12. Available from: https://www.frontiersin.org/articles/10.3389/fpsyt.2021.711065/full

  • Zhao W, Li Q, Ma Y, Wang Z, Fan B, Zhai X, et al. Behaviors Related to Psychiatric Disorders and Pain Perception in C57BL/6J Mice During Different Phases of Estrous Cycle. Front Neurosci. 2021;15. . Available from: https://www.frontiersin.org/articles/10.3389/fnins.2021.650793/full

  • Francois M, Canal Delgado I, Shargorodsky N, Leu C-S, Zeltser L. Assessing the effects of stress on feeding behaviors in laboratory mice. Elife. 2022;11. . Available from: https://elifesciences.org/articles/70271

  • Hirshfeld-Cytron JE, Duncan FE, Xu M, Jozefik JK, Shea LD, Woodruff TK. Animal age, weight and estrus cycle stage impact the quality of in vitro grown follicles. Hum Reprod. 2011;26:2473–85. Available from: https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/der183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker GC, McKee ME, Bishop C, Coscina DV. Whole-body metabolism varies across the estrous cycle in Sprague-Dawley rats. Physiol Behav. 2001;74:399–403. . Available from: https://linkinghub.elsevier.com/retrieve/pii/S0031938401005996.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link