Scientific Papers

Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome | Lipids in Health and Disease


  • Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alesi S, Ee C, Moran LJ. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. 2022;13(4):1243–66. https://doi.org/10.1093/advances/nmab141.

    Article 
    CAS 

    Google Scholar
     

  • Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10(9):668–80. https://doi.org/10.1016/s2213-8587(22)00163-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta. 2017;1863(5):1037–45. https://doi.org/10.1016/j.bbadis.2016.04.017.

    Article 
    CAS 

    Google Scholar
     

  • Mancini A, Bruno C, Vergani E, d’Abate C, Giacchi E, Silvestrini A. Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. 2021;22(4). https://doi.org/10.3390/ijms22041667.

  • Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. 2023;24(11). https://doi.org/10.3390/ijms24119205.

  • Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, et al. The role of oxidative stress in ovarian aging: a review. Journal of ovarian research. 2022;15(1):100. https://doi.org/10.1186/s13048-022-01032-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo F, Gong Z, Fernando T, Zhang L, Zhu X, Shi Y. The Lipid Profiles in Different Characteristics of Women with PCOS and the Interaction Between Dyslipidemia and Metabolic Disorder States: A Retrospective Study in Chinese Population. Front Endocrinol. 2022;13:892125. https://doi.org/10.3389/fendo.2022.892125.

    Article 

    Google Scholar
     

  • Paoli A, Mancin L, Giacona MC, Bianco A, Caprio M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med. 2020;18(1):104. https://doi.org/10.1186/s12967-020-02277-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmugadam A, Elfadil GA. Atherogenic Index of Plasma and Anthropometric Measurements among Osteoporotic Postmenopausal Sudanese Women: Possible Risk for Cardiovascular Disease. 2022;2022:1545127. https://doi.org/10.1155/2022/1545127.

    Article 

    Google Scholar
     

  • Parveen S, Khan S, Khan MM, Gupta B, Ahmad A, Alam R. Association of lipid profile and obesity in patients with polycystic ovary syndrome. Endocr Regul. 2024;58(1):83–90. https://doi.org/10.2478/enr-2024-0009.

    Article 
    PubMed 

    Google Scholar
     

  • Cruz-Gregorio A, Aranda-Rivera AK, Ortega-Lozano AJ, Pedraza-Chaverri J, Mendoza-Hoffmann F. Lipid metabolism and oxidative stress in HPV-related cancers. Free Radical Biol Med. 2021;172:226–36. https://doi.org/10.1016/j.freeradbiomed.2021.06.009.

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty S, Datta S, Datta S. Surrogate variable analysis using partial least squares (SVA-PLS) in gene expression studies. Bioinformatics (Oxford, England). 2012;28(6):799–806. https://doi.org/10.1093/bioinformatics/bts022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current protocols in bioinformatics. 2016;54:1.30.1–1..3. https://doi.org/10.1002/cpbi.5.

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods in molecular biology (Clifton, NJ). 2018;1711:243–59. https://doi.org/10.1007/978-1-4939-7493-1_12.

    Article 
    CAS 

    Google Scholar
     

  • Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics (Oxford, England). 2010;26(12):1572–3. https://doi.org/10.1093/bioinformatics/btq170.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato N, Tamada Y, Yu G. CBNplot: Bayesian network plots for enrichment analysis. 2022;38(10):2959–60. https://doi.org/10.1093/bioinformatics/btac175.

  • Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures database for gene set analysis. Bioinformatics (Oxford, England). 2015;31(18):3069–71. https://doi.org/10.1093/bioinformatics/btv313.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poojary PS, Nayak G, Panchanan G, Rao A, Kundapur SD, Kalthur SG, et al. Distinctions in PCOS Induced by Letrozole Vs Dehydroepiandrosterone With High-fat Diet in Mouse Model. 2022;163(9). https://doi.org/10.1210/endocr/bqac097.

  • Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X, et al. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. 2022;11. https://doi.org/10.7554/eLife.74713.

  • Xiao J, Shen K, Liu K, Wang Y, Fan H, Cheng Q, et al. Obesity promotes lipid accumulation in lymph node metastasis of gastric cancer: a retrospective case-control study. Lipids Health Dis. 2022;21(1):123. https://doi.org/10.1186/s12944-022-01734-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol. 2023;14:1169232. https://doi.org/10.3389/fimmu.2023.1169232.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guixue G, Yifu P, Yuan G, Xialei L, Fan S, Qian S, et al. Progress of the application clinical prediction model in polycystic ovary syndrome. Journal of ovarian research. 2023;16(1):230. https://doi.org/10.1186/s13048-023-01310-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goutami L, Jena SR, Swain A, Samanta L. Pathological Role of Reactive Oxygen Species on Female Reproduction. Adv Exp Med Biol. 2022;1391:201–20. https://doi.org/10.1007/978-3-031-12966-7_12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS. Front Horm Res. 2013;40:51–63. https://doi.org/10.1159/000341683.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naigaonkar A, Dadachanji R. Altered redox status may contribute to aberrant folliculogenesis and poor reproductive outcomes in women with polycystic ovary syndrome. 2021;38(10):2609–23. https://doi.org/10.1007/s10815-021-02241-x.

    Article 

    Google Scholar
     

  • Liu Y, Liu H, Li Z, Fan H, Yan X, Liu X, et al. The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Front Immunol. 2021;12:685724. https://doi.org/10.3389/fimmu.2021.685724.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod. 2021;104(6):1205–17. https://doi.org/10.1093/biolre/ioab050.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, et al. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol. 2020;11:617843. https://doi.org/10.3389/fphar.2020.617843.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang J, Gao Y, Feng Z, Zhang B, Na Z, Li D. Reactive oxygen species and ovarian diseases: Antioxidant strategies. Redox Biol. 2023;62:102659. https://doi.org/10.1016/j.redox.2023.102659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artimani T, Karimi J, Mehdizadeh M, Yavangi M, Khanlarzadeh E, Ghorbani M, et al. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2018;34(2):148–52. https://doi.org/10.1080/09513590.2017.1371691.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Żelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. Mast cells participate in chronic low-grade inflammation within adipose tissue. 2018;19(5):686–97. https://doi.org/10.1111/obr.12670.

    Article 

    Google Scholar
     

  • Yilmaz MA, Duran C, Basaran M. The mean platelet volume and neutrophil to lymphocyte ratio in obese and lean patients with polycystic ovary syndrome. J Endocrinol Invest. 2016;39(1):45–53. https://doi.org/10.1007/s40618-015-0335-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pergialiotis V, Trakakis E, Parthenis C, Hatziagelaki E, Chrelias C, Thomakos N, et al. Correlation of platelet to lymphocyte and neutrophil to lymphocyte ratio with hormonal and metabolic parameters in women with PCOS. Hormone molecular biology and clinical investigation. 2018;34(3). https://doi.org/10.1515/hmbci-2017-0073.

  • Chapman JC, Min SH, Freeh SM, Michael SD. The estrogen-injected female mouse: new insight into the etiology of PCOS. Reproductive biology and endocrinology : RB&E. 2009;7:47. https://doi.org/10.1186/1477-7827-7-47.

    Article 
    CAS 

    Google Scholar
     

  • Luan YY, Zhang L, Peng YQ, Li YY, Liu RX, Yin CH. Immune regulation in polycystic ovary syndrome. Clinica chimica acta; international journal of clinical chemistry. 2022;531:265–72. https://doi.org/10.1016/j.cca.2022.04.234.

  • Xiao H, Yin T. Association between immunity and different clinical symptoms in patients with polycystic ovary syndrome. 2023;90(4):e13780. https://doi.org/10.1111/aji.13780.

    Article 
    CAS 

    Google Scholar
     

  • Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15(7):441–51. https://doi.org/10.1038/nri3857.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menard LC, Minns LA, Darche S, Mielcarz DW, Foureau DM, Roos D, et al. B cells amplify IFN-gamma production by T cells via a TNF-alpha-mediated mechanism. Journal of immunology (Baltimore, Md : 1950). 2007;179(7):4857–66. https://doi.org/10.4049/jimmunol.179.7.4857.

  • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46. https://doi.org/10.1146/annurev-physiol-021909-135846.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruno MEC, Mukherjee S, Powell WL, Mori SF, Wallace FK, Balasuriya BK, et al. Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. 2022;44(3):1761–78. https://doi.org/10.1007/s11357-022-00572-w.

    Article 
    CAS 

    Google Scholar
     

  • Karakose M, Demircan K, Tutal E, Demirci T, Arslan MS, Sahin M, et al. Clinical significance of ADAMTS1, ADAMTS5, ADAMTS9 aggrecanases and IL-17A, IL-23, IL-33 cytokines in polycystic ovary syndrome. J Endocrinol Invest. 2016;39(11):1269–75. https://doi.org/10.1007/s40618-016-0472-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lång P, Patlaka C, Andersson G. Tartrate-resistant acid phosphatase type 5/ACP5 promotes cell cycle entry of 3T3-L1 preadipocytes by increasing IGF-1/Akt signaling. FEBS Lett. 2021;595(20):2616–27. https://doi.org/10.1002/1873-3468.14184.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lång P, van Harmelen V, Rydén M, Kaaman M, Parini P, Carneheim C, et al. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PLoS ONE. 2008;3(3):e1713. https://doi.org/10.1371/journal.pone.0001713.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassez A, Vos H, Van Dyck L, Floris G. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. 2021;27(5):820–32. https://doi.org/10.1038/s41591-021-01323-8.

  • Zhou W, Gao F. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. 2022;7(71):eabm1920. https://doi.org/10.1126/sciimmunol.abm1920.

  • Ramos-Lopez O, Riezu-Boj JI, Milagro FI. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. 2019;71(5):840–51. https://doi.org/10.1080/01635581.2018.1531136.

    Article 
    CAS 

    Google Scholar
     

  • Campbell JE, Ussher JR, Mulvihill EE, Kolic J, Baggio LL, Cao X, et al. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med. 2016;22(1):84–90. https://doi.org/10.1038/nm.3997.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitter T, Agerer F, Peterson L, Munzner P, Hauck CR. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J Exp Med. 2004;199(1):35–46. https://doi.org/10.1084/jem.20030204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buntru A, Kopp K, Voges M, Frank R, Bachmann V, Hauck CR. Phosphatidylinositol 3’-kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis. J Biol Chem. 2011;286(11):9555–66. https://doi.org/10.1074/jbc.M110.216085.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, et al. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022;153:113341. https://doi.org/10.1016/j.biopha.2022.113341.

  • Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. 2019;366(6463). https://doi.org/10.1126/science.aar5551.

  • Hong CH, Ko MS, Kim JH, Cho H, Lee CH, Yoon JE, et al. Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cell Mol Gastroenterol Hepatol. 2022;13(3):925–47. https://doi.org/10.1016/j.jcmgh.2021.12.002.

    Article 
    PubMed 

    Google Scholar
     

  • Castelli V, Brandolini L, d’Angelo M. CXCR1/2 Inhibitor Ladarixin Ameliorates the Insulin Resistance of 3T3-L1 Adipocytes by Inhibiting Inflammation and Improving Insulin Signaling. 2021;10(9). https://doi.org/10.3390/cells10092324.

  • Citro A, Cantarelli E, Maffi P, Nano R, Melzi R, Mercalli A, et al. CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Investig. 2012;122(10):3647–51. https://doi.org/10.1172/jci63089.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banaszewska B, Ozegowska K, Polska M, Pawelczyk L. Ibuprofen Reduces Testosterone Level in Women With Polycystic Ovary Syndrome. 2022;6(10):bvac128. https://doi.org/10.1210/jendso/bvac128.

  • Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res. 2016;57(4):663–73. https://doi.org/10.1194/jlr.M066530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroll B. Non-antibiotic treatments for upper-respiratory tract infections (common cold). Respir Med. 2005;99(12):1477–84. https://doi.org/10.1016/j.rmed.2005.09.039.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Xu H, Luo L, Qiao L, Wang Y, Xu M, et al. Thalidomide Prevented and Ameliorated Pathogenesis of Crohn’s Disease in Mice via Regulation of Inflammatory Response and Fibrosis. Front Pharmacol. 2019;10:1486. https://doi.org/10.3389/fphar.2019.01486.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link