Scientific Papers

A structured biomimetic nanoparticle as inflammatory factor sponge and autophagy-regulatory agent against intervertebral disc degeneration and discogenic pain | Journal of Nanobiotechnology


  • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators, Global, Regional, Incidence N. Prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article 

    Google Scholar
     

  • Ohtori S, Inoue G, Miyagi M, Takahashi K. Pathomechanisms of Discogenic Low Back Pain in humans and animal models. Spine J. 2015;15(6):1347–55. https://doi.org/10.1016/j.spinee.2013.07.490.

    Article 
    PubMed 

    Google Scholar
     

  • Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, Luetmer PH. MRI findings of Disc Degeneration are more prevalent in adults with low back Pain than in asymptomatic controls: a systematic review and Meta-analysis. AJNR Am J Neuroradiol. 2015;36(12):2394–9. https://doi.org/10.3174/ajnr.A4498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorth DJ, Shapiro IM, Risbud MV. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10(1):7. https://doi.org/10.1038/s41419-018-1246-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson ZI, Doolittle AC, Snuggs JW, Shapiro IM, Le Maitre CL, Risbud MV. TNF-α promotes Nuclear Enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in Nucleus Pulposus cells. J Biol Chem. 2017;292(42):17561–75. https://doi.org/10.1074/jbc.M117.790378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchand F, Perretti M, McMahon SB. Role of the Immune System in Chronic Pain. Nat Rev Neurosci. 2005;6(7):521–32. https://doi.org/10.1038/nrn1700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakazawa KR, Walter BA, Laudier DM, Krishnamoorthy D, Mosley GE, Spiller KL, Iatridis JC. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 2018;18(2):343–56. https://doi.org/10.1016/j.spinee.2017.09.018.

    Article 
    PubMed 

    Google Scholar
     

  • Li X-C, Luo S-J, Fan W, Zhou T-L, Tan D-Q, Tan R-X, Xian Q-Z, Li J, Huang C-M, Wang M-S. Macrophage polarization regulates intervertebral disc degeneration by modulating cell proliferation, inflammation mediator secretion, and Extracellular Matrix Metabolism. Front Immunol. 2022;13:922173. https://doi.org/10.3389/fimmu.2022.922173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration. Eur Cell Mater 2015, 30, 104–116; discussion 116–117. https://doi.org/10.22203/ecm.v030a08.

  • Risbud MV, Shapiro IM. Role of cytokines in Intervertebral Disc Degeneration: Pain and Disc Content. Nat Rev Rheumatol. 2014;10(1):44–56. https://doi.org/10.1038/nrrheum.2013.160.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother. 2020;131:110660. https://doi.org/10.1016/j.biopha.2020.110660.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH. Herniated lumbar intervertebral discs spontaneously produce Matrix metalloproteinases, nitric oxide, Interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976). 1996;21(3):271–7. https://doi.org/10.1097/00007632-199602010-00003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kepler CK, Markova DZ, Dibra F, Yadla S, Vaccaro AR, Risbud MV, Albert TJ, Anderson DG. Expression and relationship of Proinflammatory Chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Spine (Phila Pa 1976). 2013;38(11):873–80. https://doi.org/10.1097/BRS.0b013e318285ae08.

    Article 
    PubMed 

    Google Scholar
     

  • Krock E, Millecamps M, Anderson KM, Srivastava A, Reihsen TE, Hari P, Sun YR, Jang SH, Wilcox GL, Belani KG, Beebe DS, Ouellet J, Pinto MR, Kehl LJ, Haglund L, Stone LS. Interleukin-8 as a Therapeutic Target for Chronic Low Back Pain: Upregulation in Human Cerebrospinal Fluid and Pre-Clinical Validation with Chronic Reparixin in the SPARC-Null Mouse Model. EBioMedicine 2019, 43, 487–500. https://doi.org/10.1016/j.ebiom.2019.04.032.

  • Liu X-G, Hou H-W, Liu Y-L. Expression levels of IL-17 and TNF-α in degenerated lumbar intervertebral discs and their correlation. Exp Ther Med. 2016;11(6):2333–40. https://doi.org/10.3892/etm.2016.3250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S-J, Park S-M, Cho Y-W, Jung Y-J, Lee D-G, Jang S-H, Park H-W, Hwang S-J, Ahn S-H. Changes in expression of mRNA for Interleukin-8 and effects of Interleukin-8 receptor inhibitor in the spinal dorsal horn in a rat model of lumbar disc herniation. Spine (Phila Pa 1976). 2011;36(25):2139–46. https://doi.org/10.1097/BRS.0b013e31821945a3.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Liu H, Yang H, Wang J, Wang H, Zhang K, Ding W, Zheng Z. Both expression of cytokines and posterior Annulus Fibrosus rupture are essential for Pain Behavior Changes Induced by degenerative intervertebral disc: an experimental study in rats. J Orthop Res. 2014;32(2):262–72. https://doi.org/10.1002/jor.22494.

    Article 
    PubMed 

    Google Scholar
     

  • Rafieva LM, Gasanov EV. Neurotrophin propeptides: Biological functions and Molecular mechanisms. Curr Protein Pept Sci. 2016;17(4):298–305. https://doi.org/10.2174/1389203716666150623104145.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocco ML, Soligo M, Manni L, Aloe L. Nerve growth factor: early studies and recent clinical trials. Curr Neuropharmacol. 2018;16(10):1455–65. https://doi.org/10.2174/1570159X16666180412092859.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Cross AK, Le Maitre CL. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res Ther. 2014;16(5):416. https://doi.org/10.1186/s13075-014-0416-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JM, Song JY, Baek M, Jung H-Y, Kang H, Han IB, Kwon YD, Shin DE. Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res. 2011;29(2):265–9. https://doi.org/10.1002/jor.21210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, Edwards MJ, Mühlemann K, Steinmann J, Kleuser B, Japtok L, Luginbühl M, Wolfmeier H, Scherag A, Gulbins E, Kadioglu A, Draeger A, Babiychuk EB. Engineered liposomes Sequester Bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol. 2015;33(1):81–8. https://doi.org/10.1038/nbt.3037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang LA. Biomimetic Nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013;8(5):336–40. https://doi.org/10.1038/nnano.2013.54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller MD, Ching KL, Liang F-X, Dhabaria A, Tam K, Ueberheide BM, Unutmaz D, Torres VJ, Cadwell K. Decoy exosomes provide protection against bacterial toxins. Nature. 2020;579(7798):260–4. https://doi.org/10.1038/s41586-020-2066-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant-biomimetic nanoparticles Potentiate Heterosubtypic Influenza immunity. Science. 2020;367(6480):eaau0810. https://doi.org/10.1126/science.aau0810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, Li S, Zheng Q, Chu C, Wang Z, Zheng Z, Tian R, Ge S, Zhang X, Xia N-S, Liu G, Chen X. Virus-Mimetic Nanovesicles as a Versatile Antigen-Delivery System. Proc Natl Acad Sci U S A. 2015;112(45):E6129–6138. https://doi.org/10.1073/pnas.1505799112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, Lin H, Zhang Y, Li W, Zhang X, Chen X, Liu G. Genetically Engineered Liposome-like nanovesicles as active targeted transport platform. Adv Mater. 2018;30(7). https://doi.org/10.1002/adma.201705350.

  • Parmar N, Chandrakar P, Vishwakarma P, Singh K, Mitra K, Kar S. Leishmania Donovani exploits Tollip, a multitasking protein, to impair TLR/IL-1R signaling for its survival in the host. J Immunol. 2018;201(3):957–70. https://doi.org/10.4049/jimmunol.1800062.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for Sepsis Management. Proc Natl Acad Sci U S A. 2017;114(43):11488–93. https://doi.org/10.1073/pnas.1714267114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng Q-F, Cai X, Qu D, Lu L, Xie Y, Jiang S, Chen X. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A. 2020;117(44):27141–7. https://doi.org/10.1073/pnas.2014352117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21. https://doi.org/10.1038/nature15373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE, Czaja MJ. Impaired macrophage autophagy increases the Immune response in obese mice by promoting Proinflammatory Macrophage polarization. Autophagy. 2015;11(2):271–84. https://doi.org/10.1080/15548627.2015.1009787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J-C, Luo T, Feng B, Huang Z, Zhang Y, Huang H, Yang X, Wen J, Bai X, Cui Z-K. Exploring the translational potential of PLGA nanoparticles for Intra-articular Rapamycin Delivery in Osteoarthritis Therapy. J Nanobiotechnol. 2023;21(1):361. https://doi.org/10.1186/s12951-023-02118-4.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Dou G, Li Z, Wang X, Jin R, Liu Y, Kuang H, Huang X, Yang X, Yang X, Liu S, Wu M, Guo H, Ding F, Xu H, Liu S, Jin Y, Xuan K. Hybrid Biomaterial initiates Refractory Wound Healing via Inducing transiently heightened inflammatory responses. Adv Sci. 2022;9(21):2105650. https://doi.org/10.1002/advs.202105650.

    Article 
    CAS 

    Google Scholar
     

  • Cui T, Yu J, Wang C, Chen S, Li Q, Guo K, Qing R, Wang G, Ren J. Micro-gel ensembles for Accelerated Healing of Chronic Wound via pH regulation. Adv Sci. 2022;9(22):2201254. https://doi.org/10.1002/advs.202201254.

    Article 
    CAS 

    Google Scholar
     

  • Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS–induced pro–inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–61. https://doi.org/10.1007/s00018-020-03656-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams KS, Killebrew DA, Clary GP, Seawell JA, Meeker RB. Differential Regulation of Macrophage phenotype by mature and pro-nerve growth factor. J Neuroimmunol. 2015;285:76–93. https://doi.org/10.1016/j.jneuroim.2015.05.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen P, Liu X, Gu C, Zhong P, Song N, Li M, Dai Z, Fang X, Liu Z, Zhang J, Tang R, Fan S, Lin XA. Plant-derived natural photosynthetic system for improving cell anabolism. Nature. 2022;612(7940):546–54. https://doi.org/10.1038/s41586-022-05499-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR, Chen C, Donnelly RF, Wang X, Makvandi P, Paiva-Santos AC. Macrophage cell membrane-cloaked nanoplatforms for Biomedical Applications. Small Methods. 2022;6(8):e2200289. https://doi.org/10.1002/smtd.202200289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locati M, Curtale G, Mantovani A, Diversity. Mechanisms, and significance of macrophage plasticity. Annu Rev Pathol Mech Dis. 2020;15(1):123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Chen X, Cai P, Sun H, Shen S, Guo B, Jiang Q. Reprogramming mitochondrial metabolism in synovial macrophages of early osteoarthritis by a camouflaged Meta-defensome. Adv Mater. 2022;34(30):e2202715. https://doi.org/10.1002/adma.202202715.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng P, Che Y, Gao C, Zhu L, Gao J, Vo NV. Immune exposure: how macrophages interact with the Nucleus Pulposus. Front Immunol. 2023;14:1155746. https://doi.org/10.3389/fimmu.2023.1155746.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: current options and future directions. Theranostics. 2021;11(1):27–47. https://doi.org/10.7150/thno.48987.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi K, Aoki Y, Ohtori S. Resolving Discogenic Pain. Eur Spine J. 2008;17(Suppl 4):428–31. https://doi.org/10.1007/s00586-008-0752-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa S, Furukawa Y. Nerve growth factor synthesis and its Regulatory mechanisms: an Approach to Therapeutic induction of nerve growth factor synthesis. Cerebrovasc Brain Metab Rev. 1990;2(4):328–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Wyatt SL, Spori B, Vizard TN, Davies AM. Selective regulation of nerve growth factor expression in developing cutaneous tissue by early sensory innervation. Neural Dev. 2011;6:18. https://doi.org/10.1186/1749-8104-6-18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthurs JW, Pauli JL, Palmiter RD. Activation of Parabrachial Tachykinin 1 neurons counteracts some behaviors mediated by Parabrachial Calcitonin Gene-related peptide neurons. Neuroscience. 2023;517:105–16. https://doi.org/10.1016/j.neuroscience.2023.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sholl DA. Dendritic Organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953;87(4):387–406.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira TA, Blackman AV, Oyrer J, Jayabal S, Chung AJ, Watt AJ, Sjöström PJ, van Meyel DJ. Neuronal Morphometry directly from bitmap images. Nat Methods. 2014;11(10):982–4. https://doi.org/10.1038/nmeth.3125.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day INM, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and Ubiquitin System protein. Prog Neurobiol. 2010;90(3):327–62. https://doi.org/10.1016/j.pneurobio.2009.10.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner M. Role of GFAP in CNS injuries. Neurosci Lett. 2014;565:7–13. https://doi.org/10.1016/j.neulet.2014.01.055.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera DG, Robertson HA. Activation of C-Fos in the brain. Prog Neurobiol. 1996;50(2–3):83–107. https://doi.org/10.1016/s0301-0082(96)00021-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for Cancer. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer Nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco E, Shen H, Ferrari M. Principles of Nanoparticle Design for Overcoming Biological barriers to Drug Delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–5. https://doi.org/10.1073/pnas.1106634108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian K, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y. Cancer-cell-membrane-coated nanoparticles with a yolk-Shell structure augment Cancer Chemotherapy. Nano Lett. 2020;20(2):936–46. https://doi.org/10.1021/acs.nanolett.9b03817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182–90. https://doi.org/10.1038/s41565-018-0254-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane Coating Nanotechnology. Adv Mater. 2018;30(23):e1706759. https://doi.org/10.1002/adma.201706759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous Cancer cell membrane-camouflaged nanoparticles Target Drug Delivery and enhance the Chemotherapy Efficacy of Hepatocellular Carcinoma. Cancer Lett. 2023;558:216106. https://doi.org/10.1016/j.canlet.2023.216106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, Gao G, Pan H, Liu L, Ma A, Cui H, Ma Y, Cai L. Cancer Cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal Therapy. ACS Nano. 2016;10(11):10049–57. https://doi.org/10.1021/acsnano.6b04695.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Macrophage membrane-coated nanoparticles for Tumor-targeted chemotherapy. Nano Lett. 2018;18(3):1908–15. https://doi.org/10.1021/acs.nanolett.7b05263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered cell-membrane-coated nanoparticles directly Present Tumor antigens to promote anticancer immunity. Adv Mater. 2020;32(30):e2001808. https://doi.org/10.1002/adma.202001808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. Cancer Cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12(6):5121–9. https://doi.org/10.1021/acsnano.7b09041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-mimicking nanoparticles can neutralize HIV Infectivity. Adv Mater. 2018;30(45):e1802233. https://doi.org/10.1002/adma.201802233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62. https://doi.org/10.1016/j.immuni.2016.02.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–66. https://doi.org/10.1146/annurev-physiol-022516-034339.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li K, Yan G, Huang H, Zheng M, Ma K, Cui X, Lu D, Zheng L, Zhu B, Cheng J, Zhao J. Anti-inflammatory and Immunomodulatory effects of the Extracellular vesicles derived from human umbilical cord mesenchymal stem cells on Osteoarthritis via M2 macrophages. J Nanobiotechnol. 2022;20(1):38. https://doi.org/10.1186/s12951-021-01236-1.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Zhou H, Bu Q, Wei S, Li L, Zhou J, Zhou S, Su W, Liu M, Liu Z, Wang M, Lu L. Role of XBP1 in regulating the progression of nonalcoholic steatohepatitis. J Hepatol. 2022;77(2):312–25. https://doi.org/10.1016/j.jhep.2022.02.031.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization – PubMed. https://pubmed.ncbi.nlm.nih.gov/34793917/ (accessed 2023-09-28).

  • Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a New Antifungal Antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active Principle. J Antibiot. 1975;28(10):721–6. https://doi.org/10.7164/antibiotics.28.721.

    Article 

    Google Scholar
     

  • Li J, Kim SG, Blenis J, Rapamycin. One drug, many effects. Cell Metab. 2014;19(3):373–9. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YC, Guan K-L, mTOR. A pharmacologic target for Autophagy Regulation. J Clin Invest. 2015;125(1):25–32. https://doi.org/10.1172/JCI73939.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortimore GE, Schworer CM. Induction of autophagy by amino-acid deprivation in Perfused Rat Liver. Nature. 1977;270(5633):174–6. https://doi.org/10.1038/270174a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weichhart T, Hengstschläger M, Linke M. Regulation of Innate Immune cell function by mTOR. Nat Rev Immunol. 2015;15(10):599–614. https://doi.org/10.1038/nri3901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, Ge W, Wu J, Du P, Chen Y. Boosting mTOR-Dependent autophagy via Upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress Injury. EBioMedicine. 2018;35:345–60. https://doi.org/10.1016/j.ebiom.2018.08.035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park H-S, Song J-W, Park J-H, Lim B-K, Moon O-S, Son H-Y, Lee J-H, Gao B, Won Y-S, Kwon H-J. TXNIP/VDUP1 attenuates Steatohepatitis via Autophagy and fatty acid oxidation. Autophagy. 2021;17(9):2549–64. https://doi.org/10.1080/15548627.2020.1834711.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, Trachtenberg B, Cooke JP, Tasciotti E. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020;126(1):25–37. https://doi.org/10.1161/CIRCRESAHA.119.315185.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez P-Y, Benz CC, Kapahi P, Nelson PS, Campisi JMTOR. Regulates the Pro-tumorigenic Senescence-Associated Secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17(8):1049–61. https://doi.org/10.1038/ncb3195.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brattström C, Wilczek H, Tydén G, Böttiger Y, Säwe J, Groth CG. Hyperlipidemia in renal transplant recipients treated with Sirolimus (Rapamycin). Transplantation. 1998;65(9):1272–4. https://doi.org/10.1097/00007890-199805150-00023.

    Article 
    PubMed 

    Google Scholar
     

  • Aparicio G, Calvo MB, Medina V, Fernández O, Jiménez P, Lema M, Figueroa A, Antón Aparicio LM. Comprehensive Lung Injury Pathology Induced by mTOR inhibitors. Clin Transl Oncol. 2009;11(8):499–510. https://doi.org/10.1007/s12094-009-0394-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai J, Zhang Y, Fan Q, Xu J, Shan H, Gao X, Ma Q, Sheng L, Zheng X, Cheng W, Li D, Zhang M, Hao Y, Feng L, Chen Q, Zhou X, Wang C. Reactive oxygen species-scavenging Scaffold with Rapamycin for treatment of intervertebral disk degeneration. Adv Healthc Mater. 2020;9(3):1901186. https://doi.org/10.1002/adhm.201901186.

    Article 
    CAS 

    Google Scholar
     

  • Yang M, Liu J, Shao J, Qin Y, Ji Q, Zhang X, Du J. Cathepsin S-Mediated autophagic flux in Tumor-Associated macrophages accelerate Tumor Development by promoting M2 polarization. Mol Cancer. 2014;13(1):43. https://doi.org/10.1186/1476-4598-13-43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox R, Nhan TQ, Law GL, Morris DR, Liles WC, Schwartz SM. PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J. 2007;26(2):505–15. https://doi.org/10.1038/sj.emboj.7601522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37. https://doi.org/10.1038/nri2546.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu F-J, Cui H, Pan H, Cheung MC, Cao K, Iatridis X, Zheng JC. Painful intervertebral disc degeneration and inflammation: from Laboratory evidence to clinical interventions. Bone Res. 2021;9:7. https://doi.org/10.1038/s41413-020-00125-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markman JD, Bolash RB, McAlindon TE, Kivitz AJ, Pombo-Suarez M, Ohtori S, Roemer FW, Li DJ, Viktrup L, Bramson C, West CR, Verburg KM. Tanezumab for Chronic Low Back Pain: a Randomized, Double-Blind, placebo- and activecontrolled, phase 3 study of efficacy and safety. Pain. 2020;161(9):2068–78. https://doi.org/10.1097/j.pain.0000000000001928.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc.

  • Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L. Macrophage-like Nanoparticles Concurrently Absorbing Endotoxins and Proinflammatory Cytokines for Sepsis Management. Proc. Natl. Acad. Sci. U.S.A 2017, 114 (43), 11488–11493. https://doi.org/10.1073/pnas.1714267114.

  • Gao X, Hai X, Baigude H, Guan W, Liu Z. Fabrication of functional Hollow microspheres constructed from MOF shells: Promising Drug Delivery systems with High Loading Capacity and targeted transport. Sci Rep. 2016;6:37705. https://doi.org/10.1038/srep37705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtney TM, Darrah KE, Horst TJ, Tsang M, Deiters A. Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in cells and zebrafish embryos. ACS Chem Biol. 2021;16(11):2434–43. https://doi.org/10.1021/acschembio.1c00547.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai W, Chen Z, Barve A, Peng Z, Cheng KA. Novel rapamycin-polymer Conjugate based on a New Poly(Ethylene Glycol) Multiblock Copolymer. Pharm Res. 2014;31(3):706–19. https://doi.org/10.1007/s11095-013-1192-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Targeted Noninvasive Treatment of Choroidal Neovascularization by Hybrid Cell-Membrane-Cloaked Biomimetic Nanoparticles – PubMed. https://pubmed.ncbi.nlm.nih.gov/34037377/ (accessed 2024-02-18).

  • Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z. Proper animal experimental designs for Preclinical Research of Biomaterials for intervertebral disc regeneration. Biomater Transl. 2021;2(2):91–142. https://doi.org/10.12336/biomatertransl.2021.02.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd Isa IL, Abbah SA, Kilcoyne M, Sakai D, Dockery P, Finn DP, Pandit A. Implantation of Hyaluronic Acid Hydrogel prevents the Pain phenotype in a rat model of intervertebral disc Injury. Sci Adv. 2018;4(4):eaaq0597. https://doi.org/10.1126/sciadv.aaq0597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized disc hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioactive Mater. 2021;6(10):3541–56. https://doi.org/10.1016/j.bioactmat.2021.03.014.

    Article 
    CAS 

    Google Scholar
     

  • Han B, Zhu K, Li F, Xiao Y, Feng J, Shi Z, Lin M, Wang J, Chen QA. Simple disc degeneration Model Induced by Percutaneous needle puncture in the rat tail. Spine. 2008;33(18):1925–34. https://doi.org/10.1097/BRS.0b013e31817c64a9.

    Article 
    PubMed 

    Google Scholar
     

  • Le Maitre CL, Dahia CL, Giers M, Illien-Junger S, Cicione C, Samartzis D, Vadala G, Fields A, Lotz J. Development of a standardized histopathology Scoring System for Human intervertebral disc degeneration: an Orthopaedic Research Society Spine Section Initiative. JOR Spine. 2021;4(2):e1167. https://doi.org/10.1002/jsp2.1167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link