Scientific Papers

IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial–mesenchymal transition | Cell Communication and Signaling


  • Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sisto M, Ribatti D, Lisi S. Organ fibrosis and autoimmunity: the role of inflammation in TGFβ-dependent EMT. Biomolecules. 2021;11:310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal. 2021;19:32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor budding: the name is EMT Partial EMT. J Clin Med. 2016;5:51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017;11:755–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216:1016–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieto MA, Huang RYJ, Jackson RA, Thiery JPEMT. Cell. 2016;2016(166):21–45.

    Article 

    Google Scholar
     

  • Sheng L, Zhuang S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front Physiol. 2020;11:569322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166:1321–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, et al. Implication of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol. 2015;5:155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between microenvironment and partial EMT as the driver of tumor progression. iScience. 2021;24:102113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther. 2019;18:437–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1:303–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017;11:805–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26:7445–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 2011;9:1658–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 2011;71:5296–306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ, Zhou SL, et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating JAK2/STAT3/Snail pathway. Int J Oncol. 2015;46:587–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng F, Weng Y, Li X, Wang T, Fan M, Shi Q. Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer. Pathol Res Pract. 2020;216:15292.

    Article 

    Google Scholar
     

  • Tabei Y, Yokota K, Nakajima Y. Interleukin-1β released from macrophages stimulated with indium tin oxide nanoparticles induced epithelial mesenchymal transition in A549 cells. Environ Sci Nano. 2022;9:1489–508.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11:87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee CH, Chang JSM, Syu SH, Wong TS, Chan JYW, Tang YC, et al. IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol. 2015;230:875–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Ong SL, Tran LM, Jing Z, Liu B, Park SJ, et al. Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci Rep. 2020;10:377.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol. 2013;8:58–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris VM. Protein detection by Simple Western™ analysis. Methods Mol Biol. 2015;1312:465–8.

    Article 
    PubMed 

    Google Scholar
     

  • Tabei Y, Abe H, Suzuki S, Takeda N, Arai JI, Nakajima Y. Sedanolide activates KEAP1-NRF2 pathway and ameliorates hydrogen peroxide-induced apoptotic cell death. Int J Mol Sci. 2023;24:16532.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastushenko I, Blanpain C. EMT transition state during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293:L525–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3:cm1.

    PubMed 

    Google Scholar
     

  • Cheng CY, Kuo CT, Lin CC, Hsieh HL, Yang CM. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br J Pharmacol. 2010;160:1595–610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013;5:a017459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Guerrero E, Chen E, Kockx M, An SW, Chong BH, Khachigian LM. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM. PLoS ONE. 2012;7:e39811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018;17:53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yotsumoto F, Fukagawa S, Miyata K, Nam SO, Katsuda T, Miyahara D, et al. HB-EGF is a promising therapeutic target for lung cancer with secondary mutation of EGFRT790M. Anticancer Res. 2017;37:3825–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearson G, Robinson F, Gibson TB, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Fu L, Chen S, He G, Chen Y, Liu B. Targeting extracellular signal-regulated protein kinase 1/2 (ERK1/2) in cancer: An update on pharmacological small-molecule inhibitors. J Med Chem. 2022;65:13561–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IκB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev. 2012;246:168–82.

    Article 
    PubMed 

    Google Scholar
     

  • Ben-Addi A, Mambole-Dema A, Brender C, Martin SR, Janzen J, Kjaer S, Smerdon SJ, et al. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases. Proc Natl Acad Sci U S A. 2014;111:E2394–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal. 2014;7:ra91.

    Article 
    PubMed 

    Google Scholar
     

  • Liarte S, Bernabé-García Á, Nicolás FJ. Human skin keratinocytes on sustained TGF-β stimulation reveal partial EMT features and weaken growth arrest responses. Cells. 2020;9:255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundgren K, Nordenskjöld B, Landberg G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br J Cancer. 2009;101:1769–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villanueva-Duque A, Zuniga-Eulogio MD, Dena-Beltran J, Castaneda-Saucedo E, Calixto-Galvez M, Mendoza-Catalán MA, et al. Leptin induces partial epithelial-mesenchymal transition in a FAK-ERK dependent pathway in MCF10A mammary non-tumorigenic cell. Int J Clin Exp Pathol. 2017;10:10334–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11:184–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moghal N, Sternberg PW. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol. 1999;11:190–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal. 2007;19:2013–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev. 2016;96:1025–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.

    Article 
    CAS 

    Google Scholar
     

  • Higashiyama S, Nanba D, Nakayama H, Inoue H, Fukuda S. Ectodomain shedding and remnant peptide signaling of EGFRs and their ligands. J Biochem. 2011;150:15–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebmann C. EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol. 2011;331:222–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo M, Sakurai H, Ueno Y, Ohtani O, Saiki I. Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin αv-mediated ADAM activity in hepatocellalr carcinoma: a novel functional target for gefitinib. Cancer Sci. 2006;97:155–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vara JAF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signaling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article 
    CAS 

    Google Scholar
     

  • Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene. 2005;24:7443–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal. 2023;21:201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, et al. Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer. PLoS ONE. 2013;8:e56664.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013;4:e875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Yang Y, Zheng Z, Zhang M, Chen X, Xiao N, et al. IL-1β promotes esophageal squamous cell carcinoma growth and metastasis through FOXO3A by activating the PI3K/AKT pathway. Cell Death Discov. 2024;10:238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaramillo ML, Banville M, Collins C, Paul-Roc B, Bourget L, O’Connor-McCourt M. Differential sensitivity of A549 non-small lung carcinoma cell responses to epidermal growth factor receptor pathway inhibitors. Cancer Biol Ther. 2008;7:557–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu ZC, Chen XH, Song HX, Wang HS, Zhang G, Wang H, et al. Snail regulated by PKC/GSK-3β pathway is crucial for EGF-induced epithelial-mesenchymal transition (EMT) of cancer cells. Cell Tissue Res. 2014;358:491–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauand C, Rezende-Teixeira P, Cortez BA, Niero EL, Machado-Santelli GM. Independent of ErbB1 gene copy number, EGF stimulates migration but not associated with cell proliferation in non-small cell lung cancer. Cancer Cell Int. 2013;13:38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schelch K, Vogel L, Schneller A, Brankovic J, Mohr T, Mayer RL, et al. EGF induces migration independent of EMT or invasion in A549 lung adenocarcinoma cells. Front Cell Dev Biol. 2021;9:634371.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117:3786–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang W, Bai X, Luan X, Min J, Tian X, Li H, et al. Delicate regulation of IL-1β-mediated inflammation by cyclophilin A. Cell Rep. 2022;38:110513.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou M, Zhang G, Zou J, Liu Y, Liu B, Hu X, et al. Inhibition of the ERK1/2-ubiquitas calpains pathway attenuates experimental pulmonary fibrosis in vivo and in vitro. Exp Cell Res. 2020;391: 111886.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Zheng L, Chng WJ, Ding JL. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharmacol Sci. 2019;40:897–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tripathi K, Garg M. Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implication in human cancer. J Cell Commun Signal. 2018;12:513–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK cascade. Biomolecules. 2023;13:1555.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez C, Pozo M, Nieto E, Fernández M, Alemany S. TRAF6 and Src kinase activity regulates Cot activation by IL-1. Cell Signal. 2006;18:1376–85.

    Article 
    PubMed 

    Google Scholar
     

  • Xu D, Matsumoto ML, McKenzie BS, Zarrin AA. TPL2 kinase action and control of inflammation. Pharmacol Res. 2018;129:188–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perugorria MJ, Murphy LB, Fullard N, Chakraborty JB, Vyrla D, Wilson CL, et al. Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology. 2013;57:1238–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Coi HS, et al. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014;35:1352–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee HW, Cho HJ, Lee SJ, Song LH, Cho HJ, Park MC, et al. Tpl2 induces castration resistant prostate cancer progression and metastasis. Int J Cancer. 2015;136:2065–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114:569–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed. 2022;3:47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signaling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012;16(Suppl 2):S17-27.

    Article 
    PubMed 

    Google Scholar
     

  • Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett. 2019;459:30–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruhul Amin ARM, Senga T, Oo ML, Thant AA, Hamaguchi M. Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1β: a role for the dual signalling pathways. Akt and Erk Genes Cells. 2003;8:515–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacold ME, Suire S, Peerisic O, Lara-Gonzalez S, Davis CT, Walker EH, et al. Crystal structure and functional analysis f Ras binding to its effector phosphoinositide 3-kinase γ. Cell. 2000;103:931–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286:1741–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li Lin, Wei Q, et al. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest. 2020;130:4771–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterfield M, Jin W, Reiley W, Zhang M, Sun SC. IκB kinase is an essential component of the Tpl2 signaling pathway. Mol Cell Biol. 2004;24:6040–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link