Scientific Papers

MiR-34a-HK1 signal axis retards bone marrow mesenchymal stem cell senescence via ameliorating glycolytic metabolism | Stem Cell Research & Therapy


  • He X, Memczak S, Qu J, Belmonte JCI, Liu GH. Single-cell omics in ageing: a young and growing field. Nat Metab. 2020;2:293–302.

    Article 
    PubMed 

    Google Scholar
     

  • Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell. 2020;11:483–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 2017;26:460–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorronsoro A, Santiago FE, Grassi D, Zhang T, Lai RC, McGowan SJ, et al. Mesenchymal stem cell-derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell. 2021;20:e13337–437.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridenshteĭn A, Piatetskiĭ S, II, Petrakova KV. [Osteogenesis in transplants of bone marrow cells]. Arkh Anat Gistol Embriol. 1969;56:3–11. Kosteobrazovanie v transplantatakh kostnomozgovykh kletok.

  • Lee B-C, Yu K-R. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep. 2020;53:65–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med. 2017;39:775–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams J, Smith F, Kumar S, Vijayan M, Reddy PH. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev. 2017;35:350–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci. 2017;146:47–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badi I, Burba I, Ruggeri C, Zeni F, Bertolotti M, Scopece A, et al. MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J Gerontol A Biol Sci Med Sci. 2015;70:1304–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pi C, Ma C, Wang H, Sun H, Yu X, Gao X, et al. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD(+)-Sirt1 pathway. Stem Cell Res Ther. 2021;12:271.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398:735–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badi I, Mancinelli L, Polizzotto A, Ferri D, Zeni F, Burba I, et al. miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1 (Sirtuin 1) and Axl (AXL receptor tyrosine Kinase). Arterioscler Thromb Vasc Biol. 2018;38:2079–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao LH, Lin Y, Huang X, Pan WJ, Zhou QL, Liu B, et al. In Vivo analysis of miR-34a regulated glucose metabolism related genes in megalobrama amblycephala. Int J Mol Sci. 2018;19:2417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui R, Li C, Wang J, Dai J. Induction of hepatic miR-34a by perfluorooctanoic acid regulates metabolism-related genes in mice. Environ Pollut. 2019;244:270–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Sun M, Cao Y, Ma L, Shen Y, Velikanova AA, et al. miR-34a regulates lipid metabolism by targeting SIRT1 in non-alcoholic fatty liver disease with iron overload. Arch Biochem Biophys. 2020;695: 108642.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, Ramanathan A. The aging metabolome-biomarkers to hub metabolites. Proteomics. 2020;20:e1800407–507.

    Article 
    PubMed 

    Google Scholar
     

  • Li X, Wang X, Zhang C, Wang J, Wang S, Hu L. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif. 2022;55:e13191–291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babenko VA, Silachev DN, Danilina TI, Goryunov KV, Pevzner IB, Zorova LD, et al. Age-related changes in bone-marrow mesenchymal stem cells. Cells. 2021;10:1273.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther. 2022;13:162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Yu X, Gao X, Zhang C, Sun H, Xu K, et al. RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell Biosci. 2022;12:62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu CR, Fang QJ. Inhibiting glucose metabolism by miR-34a and miR-125b protects against hyperglycemia-induced cardiomyocyte cell death. Arq Bras Cardiol. 2021;116:415–22. A Inibição do Metabolismo da Glicose por miR-34a e miR-125b Protege contra a Morte Celular de Cardiomiócitos Causada por Hiperglicemia.

  • Xu Y, Xu Y, Zhu Y, Sun H, Juguilon C, Li F, et al. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol Ther. 2020;28:202–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Li J, Duan Y, Li Y, Sun Y, Sun H, et al. Metabolic regulation: a potential strategy for rescuing stem cell senescence. Stem Cell Rev Rep. 2022;18(5):1728–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H, et al. Telomeres and mitochondrial metabolism: implications for cellular senescence and age-related diseases. Stem Cell Rev Rep. 2022;18:1–13.

    Article 

    Google Scholar
     

  • Yu X, Sun H, Gao X, Zhang C, Sun Y, Wang H, et al. A comprehensive analysis of age-related metabolomics and transcriptomics reveals metabolic alterations in rat bone marrow mesenchymal stem cells. Aging (Albany NY). 2022;14:1014–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular Senescence by NAD(+)/Sirt3 pathway in mesenchymal stem cells. Int J Mol Sci. 2022;23:14739.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi C, Yang Y, Sun Y, Wang H, Sun H, Ma M, et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD(+)-Sirt1 signaling. Aging (Albany NY). 2019;11:3505–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: Implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today. 2022;27:2170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Zhu K, Liu L, Gu J, Niu H, Guo J. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci. 2020;111:3938–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seok J, Jung HS, Park S, Lee JO, Kim CJ, Kim GJ. Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. Stem Cell Res Ther. 2020;11:1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma C, Sun Y, Pi C, Wang H, Sun H, Yu X, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2. Front Cell Dev Biol. 2020;8: 599376.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjempakasari A, Suroto H, Santoso D. Mesenchymal stem cell senescence and osteogenesis. Medicina (Kaunas). 2021;58:61.

    Article 
    PubMed 

    Google Scholar
     

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene. 1997;15:203–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012;130:1715–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aravinthan A. Cellular senescence: a hitchhiker’s guide. Hum Cell. 2015;28:51–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuschke A, Rodrigues M, Wells AW, Sylakowski K, Wells A. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther. 2016;7:179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan X, Liu Y, Bijonowski BM, Tsai A-C, Fu Q, Logan TM, et al. NAD(+)/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol. 2020;3:774–874.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. Embo j. 2012;31:2103–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raucci A, Macrì F, Castiglione S, Badi I, Vinci MC, Zuccolo E. MicroRNA-34a: the bad guy in age-related vascular diseases. Cellular Mol Life Sci : CMLS. 2021;78:7355–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Chen D, He Y, Meléndez A, Feng Z, Hong Q, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr). 2013;35:11–22.

    Article 
    PubMed 

    Google Scholar
     

  • Park H, Park H, Pak HJ, Yang DY, Kim YH, Choi WJ, et al. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction. Differentiation. 2015;90:91–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mokhberian N, Bolandi Z, Eftekhary M, Hashemi SM, Jajarmi V, Sharifi K, et al. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1. Life Sci. 2020;257: 118055.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong M, Zhang XB, Xiang F, Fei X, Ouyang XL, Peng XC. MiR-34a suppresses osteoblast differentiation through glycolysis inhibition by targeting lactate dehydrogenase-A (LDHA). In Vitro Cell Dev Biol Anim. 2020;56:480–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu G, Gao X. Attenuation of miR-34a protects cardiomyocytes against hypoxic stress through maintenance of glycolysis. Biosci Rep. 2017;37:BSR20170925.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Ding BZ, Lin YP, Wang HB. MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1. Gene. 2018;644:56–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng L, Wei Y, Sun Y, Zhou L, Bi S, Chen W, et al. MIR34A modulates lens epithelial cell apoptosis and cataract development via the HK1/caspase 3 signaling pathway. Aging (Albany NY). 2023;15:6331–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Jesus A, Keyhani-Nejad F, Pusec CM, Goodman L, Geier JA, Stoolman JS, et al. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Mol Cell. 2022;82:1261-77.e9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji XH, Liu TT, Wei AH, Lei HP, Chen Y, Wu LN, et al. Suppression of hnRNP A1 binding to HK1 RNA leads to glycolytic dysfunction in Alzheimer’s disease models. Front Aging Neurosci. 2023;15:1218267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link